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RESUMO

Visualização de dados médicos no paciente é desejável em muitas situações, como plane-
jamento cirúrgico e treinamento médico. Atualmente, esta visualização é posśıvel com
o uso da realidade aumentada, uma tecnologia que habilita a visualização da anato-
mia virtual do paciente na localização da anatomia real em um display convencional.
Nesta dissertação, é apresentado um ambiente de realidade aumentada sem marcadores
para visualização de dados médicos no paciente com suporte ao fotorrealismo, a métodos
sofisticados para composição de dados reais e virtuais e a caracteŕısticas adicionais como
oclusão. A partir de uma avaliação do ambiente proposto, os resultados obtidos mostram
que o ambiente executa em tempo real e provê boa qualidade visual da cena aumentada.

Palavras-chave: Realidade Aumentada, Rastreamento sem marcadores, Visualização
Volumétrica, Iluminação baseada em Imagem, Visualização por foco e contexto.
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ABSTRACT

On-patient medical data visualization is desirable in several situations such as surgical
planning and training. Currently, it becomes possible with the augmented reality, a tech-
nology which enables the visualization of the patient’s virtual anatomy at the location
of the real one in a conventional display. In this dissertation, we present a markerless
augmented reality environment for on-patient medical data visualization which supports:
photorealism, advanced methods for real and virtual data composition and additional
features such as occlusion. From an evaluation of the proposed environment, the re-
sults obtained highlight that it runs in real-time and provides good visual quality of the
augmented scene.

Keywords: Augmented Reality, Markerless Registration, Volume Rendering, Image-
Based Lighting, Focus + Context Visualization.
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Chapter

1
INTRODUCTION

Physicians see medical data, typically patient’s anatomical structures, on a monitor and
they must analyze and mentally compose what is shown on the screen to the patient.
This mental model of the patient’s anatomy will serve as basis for health care in routine
examinations or time-critical situations. Therefore, the physicians must have sufficient
knowledge over patient’s and human’s anatomy to proceed appropriately during any
operation (e.g. diagnosis, surgery). In this context, an important question arises: what
is the best way to visualize patient’s relevant information so that physicians may be able
to complete a medical procedure properly? [Bichlmeier 2010].

With the availability of the augmented reality (AR) technology, one can take over
this task of mental mapping by transferring it to a computer. Therefore, the physician
is able to visualize, at the same time, the patient and a part of his anatomy. On-patient
or in-situ medical data visualization can be used for surgical planning, training, medical
diagnosis and post-operative examination.

Augmented Reality is a technology which augments the view of a real scene with
additional virtual information. Medical AR is a sub-field of AR in which the virtual
entity is a medical data. In an ideal scenario, a successful medical AR environment must
support the following requirements:

1. Real-Time Performance - In computer graphics, an application is considered to be in
real-time if it runs equal or above 15 frames per second [Akenine-Moller et al. 2002].
This concept is related to user interactivity, because the user must interact with
the application and receive fast feedback (i.e. without too much delay);

2. Accurate Tracking - By registering two surfaces or textures captured at previous
and current moments from the scene, the current camera pose can be estimated.
Therefore, the virtual object can be positioned and tracked into the augmented
scene giving the illusion that it coexists at the same location in the real world;

1



2 INTRODUCTION

3. Volume Rendering - When the virtual entity consists of a 3D medical data, it
requires a special attention to the way it will be rendered. Volume rendering is a
field which is concerned with techniques for generating images for this kind of data,
therefore being necessary for a medical AR application;

4. High Visual Quality - To improve user’s perception of the augmented scene, real
and virtual medical data must be rendered according to simple methods such as
superimposition and blending or advanced methods such as focus + context visu-
alization, depending on the medical AR application;

5. Photorealistic Rendering - To allow a seamlessly integration of the virtual medical
data into the augmented scene, it must be rendered as realistic as possible;

Traditionally, AR applications use fiducial markers for tracking and polygonal models
for rendering. However, in medical AR, fiducial markers can be intrusive in the scene,
which motivates the development of markerless tracking methods. Moreover, volumetric
models are commonly used for rendering due to the popularity of 3D scanners based on
computed tomography (CT) and magnetic resonance imaging (MRI) for medical proce-
dures. An AR environment proposed in the field of on-patient medical data visualization
must take into consideration these additional features, still running in real-time on cus-
tomer hardware.

To improve the visual understanding of the scene by the physician, it is fundamental
for a medical AR application to provide high quality rendering of the virtual objects to be
combined with the real scene. One solution for this question is to show patient’s anatomic
region of interest not as an isolated object, as done conventionally, but in the context of
the patient’s body. This not-so-new solution, formally known as focus + context (F+C)
visualization paradigm [Card et al. 1999], has been studied and developed since many
centuries ago. In 1510, Leonardo da Vinci drawn inner organs and muscles in the context
of the human body. In 1543, Vesalius published the anatomy book De Humani Corporis
Fabrica, in which bones, muscles, blood vessels among other structures are illustrated in
the context of a human body. So, based on this paradigm, the physician may understand
the relative positioning of patient’s anatomy (focus region) while visualizing patient’s
body (context region) [Bichlmeier et al. 2007].

F+C visualization is one alternative to guarantee good visual quality for the AR appli-
cation. Another alternatives such as volume clipping and illustrative context-preserving
volume rendering [Bruckner et al. 2005, Bruckner et al. 2006] can be employed to allow
a good composition between patient’s anatomy and body as well. However, while these
three paradigms enhance the visual quality of the application, they alone lack realistic
rendering for the external part of the patient’s anatomy. To solve this issue, there are so-
lutions in the field of image-based lighting to compute local illumination components (e.g.
diffuse and specular terms) from the real dynamic environmental lighting in real-time.

In the end, there are several methods developed in academy which can be applied for
every step of the application, however none of the state-of-the-art works have developed
an integrated solution for on-patient medical data visualization which supports all those
requirements listed before. In this dissertation, we show that from the recent advances in
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hardware, as GPUs and 3D sensors, and the recent techniques proposed in academy, it is
possible to create an application with real-time performance and good visual quality.

1.1 STATEMENT OF DISSERTATION

In this dissertation we present, to the best of our knowledge, the first markerless AR
(MAR) environment for on-patient medical data visualization based on photorealistic
local illumination with support to F+C visualization. To achieve this objective, we pro-
pose a novel integrated solution for MAR environment, shown in Figure 1.1. Markerless
tracking is achieved by generating a 3D reference model of the patient’s region of interest
(ROI) and tracking it during the live stream. 3D reference model reconstruction requires
markerless tracking to align the different viewpoints acquired from patient’s ROI. Pho-
torealistic rendering is achieved by computing spherical harmonics (SH) coefficients from
a light probe image and by using them to extract diffuse and specular terms from the
real environmental lighting. From the estimated camera pose, medical volume can be
rendered and displayed to a physician inside patient’s anatomy at the location of the
real one. Volumetric medical data is rendered according to standard volume render-
ing techniques and real-world local illumination components are used to lit the medical
volume in real-time. After volume rendering, F+C visualization techniques are used to
define which parts of the volume will be visualized in the final augmented scene. Real-
time performance is achieved by implementing the markerless tracking and 3D reference
model reconstruction on the graphics processing unit (GPU) and by using an optimized
implementation for photorealistic local components estimation in central processing unit
(CPU). Moreover, to improve user’s perception of the augmented scene, the application
supports occlusion.

Reference

Model

Reconstruction

Markerless

Tracking

Volume

Rendering

Focus +

Context

Visualization

Photorealistic

Components

Estimation

CUDA GPU

GLSL Shader

CPU

Figure 1.1 Integrated solution for photorealistic markerless on-patient medical data visualiza-
tion viewed as components and their relationships.

The focus of this dissertation is to evaluate the proposed solution in terms of perfor-
mance, visual quality and accuracy.
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1.2 CONTRIBUTIONS

During the development of the proposed solution, some contributions have been made,
as it will be briefly described in the next subsections.

1.2.1 Markerless Medical Augmented Reality Environment

The first contribution of this dissertation is the proposition of a novel medical MAR en-
vironment for on-patient medical data visualization. We have designed a new markerless
tracking solution which is robust to rigid tracking failures. In a global analysis, we also
have a contribution for designing a novel integrated solution for medical AR, as shown
in Figure 1.1.

1.2.2 Focus + Context Visualization based on Volume Clipping

Instead of superimposing the virtual medical data onto the patient, a better solution is to
show the patient’s anatomy as a focus region in the context of the patient’s body. This
process is known as F+C visualization paradigm. In this context, we take advantage
from the effect of volume clipping to propose three new F+C visualization techniques:
smooth contours, visible background on CT data and visible background on MRI data.

1.2.3 On-Patient Medical Data Visualization based on Photorealistic Rendering

F+C visualization alone lacks realistic rendering. Therefore, we propose the first ap-
plication for on-patient medical data visualization which supports photorealistic volume
rendering based on local illumination components.

1.3 ORGANIZATION

The remaining of this dissertation is organized as follows:
Chapter 2 gives an overview on relevant work in the fields of augmented reality, focus

+ context visualization, on-patient medical data visualization and image-based lighting.
A review on recent related work and a discussion of basic concepts for each one of those
fields are presented.

Chapter 3 presents the markerless tracking solution proposed in this dissertation.
Methods for 3D reference model reconstruction and live tracking are described. An
evaluation is conducted to validate the approach in terms of performance, accuracy and
robustness. Moreover, the use of this markerless algorithm for a typical polygon-based
AR application is presented.

Chapter 4 presents the MAR environment for on-patient medical data visualization,
describing how the medical volumes can be rendered efficiently and with high quality,
integrated into the augmented scene. Also, a semi-automatic medical volume-to-patient
registration, which takes advantage from our markerless tracking basis representation, is
shown. In this context, the F+C visualization techniques employed are presented. The
environment is evaluated in terms of performance and visual quality.

Chapter 5 shows how photorealistic volume rendering can be done based on real local
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illumination components. Performance and visual quality evaluations are performed in
order to validate the proposed solution.

This dissertation is concluded in Chapter 6, where a discussion of future work and
our final considerations are presented as well.





Chapter

2
SURVEY OF RELEVANT CONTRIBUTIONS

The techniques described in this dissertation are mainly distributed over four fields of
Computer Science: augmented reality, focus + context visualization, on-patient medical
data visualization and image-based lighting. It is fundamental to know the basic con-
cepts of these fields to fully understand the techniques that will be described along this
document and the issues they overcome. In this chapter, we give an historical overview
of AR, focusing on tracking methods, F+C visualization applied in the fields of AR and
on-patient medical data visualization, and image-based lighting in order to give a compre-
hensive description of the main achievements and challenges faced by researchers so far.
Moreover, a review on recent related work specifically for the field of on-patient medical
data visualization is performed in order to highlight the advantages and disadvantages of
the proposed approach over the state-of-the-art ones found on the literature.

2.1 AUGMENTED REALITY

Augmented Reality is a field of Computer Science in which the user’s view of a real scene
is augmented with virtual information. Accurate tracking, or camera pose estimation, is
required for the proper registration of virtual objects. Real-time performance is needed to
maintain user’s interactivity with the application. Photorealistic rendering and occlusion
support are necessary to allow a realistic composition of the virtual object into the real
scene. Since this concept has become popular by the seminal works of Ronald Azuma and
colleagues [Azuma 1995, Azuma 1997, Azuma et al. 2001], many researches have been
conducted focusing on how to solve the problem of accurate and real-time tracking, which
is one of the main technical challenges of AR.

Since the end of 90s, the main method to position a virtual object and track a real
scene in real-time relies on the use of an artificial fiducial marker. The squared shape
of the marker allows its fast recognition and tracking, while the symbol inside it is used
as an marker ID, which identifies the virtual object that must be rendered (Figure 2.1).
With the advance in terms of computational resources for customer hardware, many tech-
niques have been proposed to allow the use of any object visible in the scene as a natural

7
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marker. In these cases, tracking is based on the selection of keypoints (e.g. pixels with
high curvature or localized on corners) or edges extracted from the color image. Due
to its simplicity, ARToolKit was one of the libraries most used to help on the creation
of AR applications, even if it uses the traditional fiducial marker as basis for track-
ing [Kato and Billinghurst 1999]. Recently, some extensions for this library have been
proposed, such as: FLARToolKit [Koyama 2009], FLARAS [Souza et al. 2012], SACRA
[Santin 2008] among others.

Fiducial Marker Augmented Scene

Figure 2.1 Marker-based tracking. Fiducial Marker image is courtesy of http://www.mquter
.qut.edu.au/. Augmented Scene image is courtesy of http://kougaku-navi.net/.

In the simplest case, an AR application requires only a computer equipped with a
webcam and a fiducial marker. Therefore, tracking must operate only on the image
space, according to the features of the pixels. Several methods have been proposed to
solve this problem. The most common ones are based on the principle of optical flow
[Lucas and Kanade 1981, Horn and Schunck 1981]. The main drawbacks for this color
or texture-based tracking are the susceptibility to illumination conditions and marker
occlusion, which may affect the accuracy of the tracking algorithm. A survey on this
subject can be found in [Teichrieb et al. 2007].

In parallel to this scenario, a new hardware has gained popularity due to its robustness
and grown accessibility, the 3D depth sensor. By using a technique to compute the
distance between the objects present in the scene to the sensor, with this hardware it
becomes possible to capture the depth map: an image which store for each pixel the
depth value associated to the corresponding 3D point for a given scene.

Depth sensors can be classified into active or passive. Active sensors provide and
control their own illumination; Passive sensors only absorb environmental radiation and
extract depth information from it [Young 1994].

One of the most known methods to compute depth for passive sensors is the stereo
vision, which simulates the process of depth measurement done by the human vision
system [Marr and Poggio 1979]. For active sensors, the most used methods are: Time-
of-Flight (ToF) and structured light pattern. For the ToF technology, scene’s depth is
computed through the time difference between emission and reception of an infrared (IR)
wave sent from an IR emitter [Hansard et al. 2013]. For structured light technology,



2.2 FOCUS + CONTEXT VISUALIZATION 9

depth maps are computed through the triangulation done between a light emitter and
a sensor. A known light pattern is emitted on the scene and then captured by the
sensor. Depth information is retrieved from an analysis on the distortion of this pattern
[Besl 1988, Posdamer and Altschuler 1982].

With the recent availability of low-cost real-time depth sensors, the use of depth-based
tracking algorithms has been made popular. This comes from the fact that they are robust
to the variation of illumination conditions, as they are based on the depth of the scene
instead of its color. Also, they operate over real depth values measured from the scene,
which helps on object positioning and occlusion support as well. These methods depend
on the presence of geometric information on the scene and have a limitation in terms
of range of depth measurement, being inadequate for tracking in outdoor environments
(e.g. streets) [Whelan et al. 2012, Peasley and Birchfield 2013]. Nevertheless, the use of
this technology is suitable to the scope of this dissertation, as the human body is not
symmetric, situation in which there is not much variation on depth values captured by
the sensor. Moreover, on-patient medical data visualization applications are intended to
be used for indoor scenes (e.g. surgical rooms).

From the high performance and accuracy of the existing depth-based tracking algo-
rithms, the use of fiducial markers for positioning of the virtual object and tracking of the
real scene is no longer essential for AR applications. In this way, AR can be markerless,
where a part of the real scene is used as natural marker instead of using an artificial
fiducial marker. In this scenario, tracking becomes more complex, however, as there are
not intrusive markers that are not part of the original scene, markerless AR is desirable
in several situations such as the ones for on-patient medical data visualization. The
algorithm most used for depth-based tracking is the real-time variant of the Iterative
Closest Point (ICP) algorithm [Rusinkiewicz and Levoy 2001], which has already GPU
implementation [Izadi et al. 2011].

2.2 FOCUS + CONTEXT VISUALIZATION

Some applications for AR, such as the ones for on-patient medical data visualization,
demand a special attention to the composition between virtual and real entities of the
AR environment. Recently, many approaches have been proposed in the field of F+C
visualization to dynamically define how this composition will be done. Those techniques
are also known as ghosting or x-ray vision techniques (Figure 2.2) and all of them share
the concept of importance or saliency map, a mask which controls how real and virtual
entities should be blended, similarly to an alpha mask.

Sandor et al. designed a method for importance map computation based on character-
istic regions of both real and virtual objects inspired by three features [Sandor et al. 2010].
They are: Luminosity - to preserve regions with high illumination; Hue - to preserve
strong colors and Motion - to preserve moving structures in the final rendering. This
algorithm runs on shader, increasing little time for the application. As stated by the
authors, this work was an extension of [Avery et al. 2009] which is based on edge overlay
to improve spatial perception.

Mendez et al. proposed a F+C technique in which lightness and color contrast for a
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Original Image F+C Rendered Image

Figure 2.2 In a naive rendering, only the occluder is rendered for an augmented image. By
using a ghosting technique, the occludee parts of the model are considered for the final rendering.
In this case, they are not simply overlaid over the original image, but inserted as a focus region
in the context of the resulting augmented scene. Images courtesy of [Kalkofen et al. 2013].

given image are modified according to the importance map computed from a live color
video [Mendez et al. 2010]. By adding subtle changes on the image, they guarantee
temporal and spatial coherence between frames. The problem with this approach is its
performance, which does not achieve full 30 frames per second (FPS) even implemented
in GPU.

An adaptive F+C visualization technique was recently introduced by Kalkofen et
al. [Kalkofen et al. 2013]. In their approach, an importance map is computed for the
occluder [Mendez et al. 2010] and the occludee is inserted into the scene. Then, another
importance map is computed for this resulting image and then compared against the first
map computed. The regions on the first importance map that are not present in the final
rendering are then emphasized to be visible. This approach improves the visual quality
of the augmented scene and it runs in real-time. However, it is not suitable for MAR
environments, as it alone requires 33ms of processing time. Therefore, this additional
time would decrease severely a MAR application performance.

F+C rendering was also proposed for visualization of underground structures in
a street scene [Schall et al. 2009, Chen et al. 2010, Padilha et al. 2013]. In these ap-
proaches, a method is used to dynamically compute from still color images when under-
ground structures must be rendered in relation to moving objects present in the scene.
While the final visual quality is good, the performance of existing techniques is not full
real-time.

Traditional methods which compute importance maps from live color video of the real
scene are prone to errors because they are dependent on illumination and material prop-
erties of the real environment. To overcome these problems, Mendez and Schmalstieg
proposed a method to compute an importance mask based on the 3D model of the scene
[Mendez and Schmalstieg 2009]. It is done by using techniques such as mesh saliency
[Lee et al. 2005] or through user interaction in a preprocessing step. The problem asso-
ciated with this approach is that the importance mask creation requires some processing
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time. Therefore, the user cannot change interactively the importance mask during an
AR live stream.

The methods for F+C visualization proposed in the literature for general AR applica-
tion capture the features of the image, however their importance maps are not accurate
enough to be used for medical applications.

F+C visualization has not been only proposed for AR, but also for volume rendering
to define how internal structures of the volume (e.g. bone, organ) should be visualized
in the context of the volume’s soft tissue (Figure 2.3).

Figure 2.3 Focus + context visualization applied for volume rendering. Images courtesy of
[Bruckner et al. 2005].

Brucker et al. proposed a novel algorithm for context-preserving volume rendering
[Bruckner et al. 2005, Bruckner et al. 2006]. From factors such as: shading intensity,
gradient magnitude, distance to the eye point and previously accumulated opacity, the
method allows the user definition of the F+C rendering according to only two param-
eters which controls these four factors to interactively change the transparency level
between internal and external structures of the volume. The technique is easy to im-
plement and runs directly on the shader. An extension of this algorithm was proposed
in [Sikachev et al. 2010]. It incorporates rotation, scale, position and mouse click to
dynamically select focus and context regions.

Kruger et al. proposed the ClearView [Kruger et al. 2006]. Four layers (i.e. focus
and context structures, isosurface’s normal and curvature) are generated and composed
for each frame in order to define the final visualization. The main disadvantages for this
method are: it is naturally multi-pass (i.e. one shading pass is required to compute every
layer) and the layers must be recomputed for every viewpoint changing. Therefore, the
approach has a considerable cost in terms of performance.

Kirmizibayrak et al. proposed a volumetric brush method for interactive definition
of focus and context regions in volumetric models [Kirmizibayrak et al. 2014]. The ap-
proach runs in real-time and provides a good alternative to traditional ways to visualize
medical data for physicians, specially for applications such as radiation therapy.

F+C solutions for specific scenarios have also been proposed in the literature to solve:
complex fiber distributions [Röttger et al. 2012], blood flow [Gasteiger et al. 2011], struc-
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tured biomedical data [Abellan et al. 2008] and ultrasound [Schulte zu Berge et al. 2014]
to cite a few recent work.

The first technique proposed for F+C visualization in the field of on-patient medical
data visualization was the Contextual Anatomic Mimesis proposed by Bichlmeier et al.
[Bichlmeier et al. 2007]. Its importance map is defined by three parameters: curvature of
patient’s skin surface, angle of incidence factor (i.e. angle between the normal on the skin
surface and a vector pointing from the position of the surface and the eye) and distance
falloff (i.e. distance between each point on the surface and the intersection point of the
line of sight and the skin surface). Different from the color-based methods mentioned for
the F+C techniques used in the AR scenario, this one operates directly on the shader and
does not depend on illumination or texture for the importance map definition. Although
it provides improved perception of the 3D medical data into the scene, it does not give
special attention for some volume rendering techniques, such as volume clipping.

2.3 ON-PATIENT MEDICAL DATA VISUALIZATION

Medical AR systems for on-patient medical data visualization have been driven by dif-
ferent approaches in recent years. In this section, we classify the approaches based on
their tracking technology. A comparison between our approach and the ones proposed in
literature is done in the last subsection.

2.3.1 Marker-Based

Kutter et al. proposed a marker-based method for real-time on-patient visualization of
volumetric medical data on a Head Mounted Display (HMD) [Kutter et al. 2008]. Their
work focuses on efficient implementations for high quality volume rendering in an AR
environment. They also provide occlusion handling for physician hands. An improved
version of this work was proposed by Wieczorek et al. to handle with occlusions due
to medical instruments as well [Wieczorek et al. 2010]. Also, they included additional
effects in the system, such as virtual mirror and multi-planar reformations.

Debarba et al. proposed a method to visualize anatomic hepactetomy (i.e. anatomic
liver resections) in an AR environment [Debarba et al. 2012]. The use of a fiducial marker
made possible the positioning and tracking of the medical data in the scene. A mobile
device was used to allow the visualization of internal structures of the patient’s body.

Lee et al. proposed a registration framework for a medical AR system [Lee et al. 2012].
They used three cameras: two of them are mounted to form a stereo vision system and
reconstruct patient’s head; the other camera is used to capture the images of the patient
in real-time. In a pre-processing step, a surface is reconstructed from CT and a variant
of the ICP algorithm is used to do the image-to-patient registration. The estimation of
the third camera pose is done by using a fiducial marker.

Suenaga et al. proposed a method for on-patient medical data visualization of maxillo-
facial regions [Suenaga et al. 2013]. A 3D optical tracking system and a fiducial marker
are used to track the patient. A semi-transparent display is placed in front of the mouth
region of the patient. The display shows the maxillofacial medical data. This method
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runs in only 5 FPS.

2.3.2 Markerless

Maier-Hein et al. proposed a method for mobile MAR for on-patient visualization of med-
ical images [Maier-Hein et al. 2011]. They proposed a system in which a ToF camera is
mounted on a mobile and portable device (e.g. tablet, iPad) and the physician might move
the portable device along the body of the patient to see his anatomical information. To
estimate the camera pose, they used a graph matching algorithm [dos Santos et al. 2010]
and a anisotropic variant of the ICP algorithm [Maier-Hein et al. 2010] to align the sur-
faces continously captured by the ToF camera. This method runs in 10 FPS.

In the field of anatomic education, Blum et al. proposed the mirracle, a magic mirror
for teaching anatomy [Blum et al. 2012]. They used a display device and a Kinect sensor
to allow volume visualization of a CT dataset augmented onto the user. To track the
pose of the user, they used a skeleton tracking algorithm. As the system is designed
for educational purposes, they could use a generic CT volume which was scaled to the
size of the user and augmented onto him. Based on the assumption that the Kinect
provides inaccurate skeleton tracking, Meng et al. proposed an extension to mirracle in
which landmarks are used to improve the accuracy of the positioning and tracking of the
medical data [Meng et al. 2013]. A recent extension of this application for bone anatomy
learning has been proposed in [Stefan et al. 2014].

Mercier-Ganady et al. presented a novel MAR application for on-patient brain activity
visualization [Mercier-Ganady et al. 2014]. User’s head is tracked by using a face tracking
algorithm native from Microsoft Kinect SDK [Microsoft 2014]. Brain activity is computed
from an electroencephalography cap (EEG), which is worn by the user.

Kilgus et al. proposed a mobile MAR environment for on-patient medical data visual-
ization to support forensic pathologists during autopsy [Kilgus et al. 2014]. A structured
light sensor is mounted on a mobile device, similarly as done in [Maier-Hein et al. 2011],
and it is used to capture color and depth sensor of the body being analyzed. These
data are sent to a server which estimates the current camera pose, projecting the color
information of the medical data at the position of the body.

2.3.3 Discussion

The approaches described in Section 2.3.1 share the same drawback: they use markers
to help in the calibration, positioning and tracking of the objects in the scene. The use
of fiducial markers provides fast and accurate tracking. However, these markers are still
intrusive, because they are not part of the original scene. Moreover, the hardware of the
optical tracking system in some applications is too expensive. The approaches that do
not use such marker-based hardware, in general, do not obtain real-time performance in
its application due to the computational cost of the markerless tracking in conjunction
with the volume rendering techniques used, which require additional processing time in
comparison with polygonal model rendering. One exception of this is the mirracle system
and its extensions. However, the main drawback of the skeleton tracking used is that it
does not track accurately some parts of the body, such as head. Another exception
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is the approach proposed for brain activity visualization. However, the authors have
used a specific technique for face tracking. Different from them, our approach based
on markerless tracking runs entirely in real-time with low-cost hardware components.
Although the solution proposed in this dissertation is evaluated only for a scenario where
the region of interest is a head, we believe that with minor adaptations the method
would be general in the sense that it would track any part of the body with enough
accuracy, as its basis representation is flexible for such generality as proven in the original
papers [Rusinkiewicz and Levoy 2001, Izadi et al. 2011]. Moreover, in terms of visual
quality, we integrate into our approach state-of-the-art techniques proposed in this field
[Bichlmeier et al. 2007] to enhance the augmented visualization of the virtual internal
structures on the patient, instead of superimposing the virtual content on the scene.

Method MAR RTP F+C OCC PR ACC
Kutter et al. [2008] No Yes Yes Yes No Yes

Wieczorek et al. [2010] No Yes Yes Yes No Yes
Debarba et al. [2012] No Yes No No No No

Lee et al. [2012] No Yes No No No No
Suenaga et al. [2013] No No No No No Yes

Maier-Hein et al. [2011] Yes No No No No No
Blum et al. [2012] Yes Yes Yes No No No
Meng et al. [2013] Yes Yes Yes No No No
Stefan et al. [2014] Yes Yes Yes No No No

Mercier-Ganady et al. [2014] Yes Yes No No No No
Kilgus et al. [2014] Yes No No No No No
Proposed method Yes Yes Yes Yes Yes No

Table 2.1 Classification of on-patient medical data visualization methods proposed in the liter-
ature according to the following attributes: markerless augmented reality environment without
any artificial marker (MAR); full real-time performance at 30 FPS (RTP); support for F+C
visualization (F+C); Occlusion handling (OCC); Photorealistic volume rendering (PR); and
accuracy at surgery level (< 1mm) (ACC). Information extracted from original papers and
supplementary materials when available.

A general classification of the state-of-the-art methods presented in this section includ-
ing ours can be seen in Table 2.1. A few of them support occlusion and only ours supports
photorealistic volume rendering. The only drawback of our approach is accuracy, as it
still cannot be used for surgical environments. In this sense, only three approaches pro-
vide high accuracy for the application, however none of them are markerless, nor support
photorealistic rendering.

2.4 IMAGE-BASED LIGHTING

Photorealistic rendering is a field which has been driven by several approaches in the
literature [Karsch et al. 2011, Knecht et al. 2012, Karsch et al. 2014]. The techniques
proposed in this field are specially important for AR, as they promote a seamlessly inte-
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gration of the virtual object into the augmented scene. In this scenario, it is fundamental
to capture real-world lighting coefficients, such as dominant lighting color and direction,
to lit the virtual object so that it will be consistent with the illumination of the real scene
(Figure 2.4).

Real Scene Augmented Scene

Figure 2.4 Seamlessly integration of virtual objects into a real scene through photorealistic
rendering. Images courtesy of [Debevec 1998].

Techniques for solving the problem of real-world lighting estimation have been pro-
posed in the field of image-based lighting. One of the first solutions was proposed in
the seminal work of [Debevec 1998], where a high dynamic range (HDR) image captured
previously is used to lit the virtual objects. The main difference between the low and
high dynamic range images relies on its range of storing. Low dynamic range (LDR)
image is the kind of image captured, processed and stored from customer cameras. As
it is already known, in general it is limited to store a range of 255 values for each color
channel (i.e. red, green and blue) of the image. On the contrary, HDR images cover the
true radiance values for a given scene. Therefore, depending on the encoding method
used, we may have high dynamic range up to 79 orders of magnitude to represent more
precisely the radiance values captured from the scene [Reinhard et al. 2005].

The traditional ways to capture HDR images are by using a HDR-video camera or by
capturing and merging multiple LDR photographs of a light probe (i.e. mirrored sphere)
image taken with different exposures from the real scene [Debevec and Malik 1997]. As
HDR-video cameras are still expensive nowadays, the method for LDR merging is the
most common for creating HDR content. Accordingly, many applications have used HDR
images for photorealistic AR [Meilland et al. 2013, Pessoa et al. 2010, Pessoa et al. 2012].
However, as the HDR content was previously captured based on a static scene, it does
not give support for real-time lighting estimation in dynamic scenes, where lighting con-
dition changes on the environment. To solve this issue, a solution is to capture the
LDR image from the light probe and compute the lighting coefficients from such im-
age in real-time. This solution implies in loss of visual quality in the final render-
ing, but introduces the support for dynamic lighting conditions. Also, the result can
be improved by using available algorithms to compute HDR images from still LDR
[Banterle et al. 2013, Kovaleski and Oliveira 2014] increasing the computational cost of
the application.

To compute the lighting coefficients in real-time from a light probe image, SH basis
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[Sloan 2009] is commonly used due to its compact and efficient representation. In this
sense, some techniques have already been proposed taking one step further in this repre-
sentation to compute local illumination components in real-time based on only nine SH
coefficients [Ramamoorthi and Hanrahan 2001, Nowrouzezahrai et al. 2011]. However,
such works were originally proposed for relighting of polygonal models and were never
applied in the context of an application for on-patient medical data visualization.

2.5 SUMMARY

In this chapter we have presented the fundaments for augmented reality, focus + context
visualization and image-based lighting. Moreover, recent related work in the field of on-
patient medical data visualization were presented and compared against our approach.

Markerless tracking is desirable for on-patient medical data visualization because it
does not introduce intrusiveness in the scene. Also, software and hardware technologies
evolved such that this kind of tracking can be used for augmented reality in real-time and
with high accuracy, although there is not current markerless technology which provides
accuracy at surgery level.

Focus + context visualization is a concept which has been used in several fields of
Computer Science, including augmented reality, volume rendering and specifically on-
patient medical data visualization. Several real-time techniques have been proposed so
far, but most of them cannot be used for medical applications because they are not
accurate enough and the time they require to be processed makes their use unsuitable
for markerless applications.

To favor a realistic composition of the virtual object into the augmented scene, photo-
realistic rendering based on local illumination components must be employed. Real-time
solutions for this scenario have been proposed in the field of image-based lighting. How-
ever, to support dynamic environmental lighting estimation, the techniques exchange
high quality for the final rendering by low cost in terms of performance.

Many approaches have been proposed to solve the problem of on-patient medical data
visualization. However, none of them support photorealistic volume rendering and a few
support occlusion. These are some of the issues that our work overcomes while still
running in real-time and providing high-quality final rendering for the application. To
do so, many contributions have been proposed and are described in the next chapters of
this dissertation.
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3
MARKERLESS TRACKING

In this chapter we present the markerless tracking solution proposed in this disserta-
tion. This chapter covers the methods proposed on the following authored publications
[Macedo et al. 2013a, Macedo et al. 2013b, Macedo et al. 2013c, Macedo et al. 2014c],
[Macedo et al. 2014b]. An overview of the proposed markerless tracking solution in an
AR environment can be seen in Figure 3.1.

3D Reference Model Reconstruction

Markerless Augmented Reality

Live Stream Object Segmentation TSDF 3D Reference Model

Positioning the Virtual ObjectMarkerless Tracking

Figure 3.1 Overview of the proposed markerless solution.

3.1 VERTEX AND NORMAL MAP GENERATION

In this section we describe the algorithms that are used for every input frame to generate
vertex and normal maps, with the exception of the segmentation procedure to extract
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patient’s ROI, which is only performed during the reconstruction stage. All these algo-
rithms run on the GPU. We call vertex map an organized point cloud which resembles an
organized image (or matrix) in terms of structure, being the data organized in rows and
columns. Such representation is common for point clouds directly captured from depth
sensors. An organized dataset helps on the processing of nearest neighbour operations
[Rusu and Cousins 2011, Izadi et al. 2011]. Inspired by the same motivation, we refer to
normal map as an organized matrix which stores the normal vector for each vertex in the
vertex map.

The proposed approach is based on an RGB-D sensor and a computer with GPU,
therefore being accessible to any user. We have chosen to use the Kinect as RGB-D sensor
to capture patient’s color and depth information. Real-time performance is achieved by
using parallel processing power of the GPU in all critical algorithms.

The Kinect has two sensors that capture color (I) and depth (D) information of the
scene [Cruz et al. 2012]. I is a color image which stores for each pixel three color channels
corresponding to red, blue and green intensities measured from the scene. D is a depth
map which stores for each pixel a single channel corresponding to depth. To enable a
mapping between these two images, intrinsic and extrinsic calibrations are performed.
For convenience, we simply define this process as:

I = TcalD (3.1)

where Tcal is the transformation that maps D to I.

By calibrating the sensor, we have, in fact, a four-dimensional image which stores
color and depth information from the scene.

In order to segment patient’s ROI from the scene, as our ROI consists in patient’s
head, we apply the Viola-Jones face detector implemented in GPU to locate and segment
the face in I (Figure 3.1). Viola and Jones described a method for robust real-time face
detection in color images [Viola and Jones 2004]. The key contribution to achieve this
goal is the use of a representation called integral image to compute Haar-like features
quickly. In this representation, each pixel contains the sum of the pixels above and
to the left of the original position. Once the features are computed, a combination of
simple classifiers built using the Adaboost learning algorithm [Freund and Schapire 1995]
is employed to detect the face regions.

From the segmented ROI and by considering that Equation 3.1 has already been
applied, the segmented location can be mapped from I to D. Doing so, we achieve a
more restricted area of D to be used through the other steps of our approach.

The Kinect sensor is known to provide noisy depth data. To deal with this issue, D is
denoised by using a bilateral filter [Tomasi and Manduchi 1998], as shown in Equation 3.2
and 3.3. In this filtering technique, discontinuities of the raw depth map are preserved by
using a nonlinear combination of nearby image intensities based on geometric proximity
and photometric similarity.
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Df (u, v) =

i=u+m∑
i=u−m

j=v+n∑
j=v−n

D(u, v)w(u, v, i, j)

i=u+m∑
i=u−m

j=v+n∑
j=v−n

w(u, v, i, j)

(3.2)

w is defined by:

w(u, v, i, j) = expf(−(u− i)2 + (v − j)2

2σ2
d

− ||D(u, v)−D(i, j)||2

2σ2
c

) (3.3)

D(u, v) returns the depth intensity for the pixel located at image coordinates u and v and
Df is the filtered depth map. From empirical tests, we have set m = 3, n = 3, σc = 30
and σd = 4.5.

Depth of the background scene is segmented by applying a Z-axis threshold on Df .
We define this threshold initially 1.3m, as related work [Fanelli et al. 2011], but this value
can be changed by the user.

Df is then converted into a vertex (V ) and a normal (N) map. V can be computed
by the following product:

V (u, v) = Df(u, v)T−1
int [u, v, 1]T (3.4)

where the superscript T denotes transposition and Tint is the Kinect depth sensor’s in-
trinsic calibration matrix, which can be defined as:

Tint =

 fx 0 cx
0 fy cy
0 0 1


where fx = fy = 525, cx = 320 and cy = 240 for the Kinect sensor [Burrus 2014].

Normal map is constructed by computing the eigenvector of smallest eigenvalue of
the local covariance matrix computed for every vertex. This technique produces normal
maps with less error than traditional approaches based on neighboring points for normal
estimation [Holzer et al. 2012].

3.2 3D REFERENCE MODEL RECONSTRUCTION

With the patient’s ROI properly segmented, we need to track it through the RGB-D
sensor’s live stream. We could track it by using the current and previous depth data
directly coming from the depth sensor. However, we have chosen to integrate the different
viewpoints acquired from the scene into a single reference model (Figure 3.1) and use this
model as basis for registration, in order to improve tracking accuracy [Izadi et al. 2011].

KinectFusion algorithm is used in this context to reconstruct a 3D reference model
of patient’s ROI in real-time [Izadi et al. 2011]. This algorithm integrates raw depth
data from a Kinect into a volumetric grid to produce a high-quality 3D reconstruction
of a scene. The grid stores at each voxel the distance to the closest surface (i.e. Signed
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Distance Function - SDF) [Osher and Fedkiw 2002] and a weight that indicates uncer-
tainty of the surface measurement. For a single view, SDF values are positive in-front of
the surface, negative behind and zero-crossing where the sign changes. In KinectFusion
algorithm, SDF is only stored in a narrow region around the surface, which means that
just a truncated SDF (TSDF) is stored. These volumetric representation and integration
are based on VRIP algorithm [Curless and Levoy 1996]. Surface extraction is achieved
by detecting zero-crossings through a ray caster. All these operations run on the GPU
[Izadi et al. 2011].

3D reference model reconstruction is done only on the 3D reconstruction stage and
is the basis for MAR live tracking. The reconstruction is stopped by the user and the
virtual data can be positioned (Figure 3.1).

3.3 LIVE TRACKING

After virtual data positioning, MAR live tracking is started (Figure 3.1). In fact, live
tracking is done in two steps: during reconstruction of the 3D reference model and dur-
ing MAR with the user and the virtual data. We use a real-time variant of the Iterative
Closest Point (ICP) algorithm [Rusinkiewicz and Levoy 2001]. The main goal of the
ICP algorithm is to align two surfaces, represented as point clouds, given a good initial
guess. It was originally proposed by [Besl and McKay 1992, Chen and Medioni 1992],
adapted for real-time in [Rusinkiewicz and Levoy 2001] and finally implemented in GPU
in [Izadi et al. 2011]. In our approach, the ICP algorithm is used to estimate the trans-
formation Tlive = [Rlive|tlive] that aligns the current point cloud (Vcurr) captured by the
Kinect sensor with the previous one (Vprev) extracted from the 3D reference model. The
ICP variant used in our approach consists of the following six stages:

� Selection of Points: Points from Vcurr and Vprev are chosen as samples to guide
optimization to estimate the best rigid transformation. All the points visible
(D(u, v) > 0) are selected for optimization;

� Matching of Points: Corresponding points between Vcurr and Vprev are asso-
ciated. It is used the projective data association [Rusinkiewicz and Levoy 2001]
which matches points that are located at the same pixel. In this way, both Vcurr
and Vprev are reprojected to Dcurr and Dprev for this association based on pixel
matching;

� Weighting of Pairs: It is assigned constant weight for each association;

� Rejecting of Pairs: Pairs of correspondence are rejected if the Euclidean distance
is greater than 10mm or angle between the corresponding normal vectors is greater
than 20 degrees;

� Error Metric: It is used the well-known point-to-plane error metric to guide
optimization. It is formally defined as:
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argmin
∑
u,v

||(TliveVcurr(u, v)− Vprev(u, v)) ·Nprev(u, v)||2 (3.5)

� Error Minimization: The error is minimized using a Cholesky decomposition on
the linear system [Chen and Medioni 1992].

The use of the 3D reference model by the ICP allows a more consistent rigid registra-
tion with less incremental error [Izadi et al. 2011]. After the rigid transformation Tlive
estimation, it is applied to the virtual data, which can be composed with the real scene
captured by the Kinect.

3.3.1 Robust Real-Time Face Tracking

As shown previously, our ICP uses projective data association to find correspondences
between Vcurr and Vprev. In this association, each point is transformed into camera coordi-
nate space and perspective projected into image coordinates. The corresponding points
are that on the same image coordinates. The ICP fails (i.e. does not converge to a
correct alignment) when there is not a small pose variation between sequential frames.
We detect this situation by checking if the linear system computed from Equation 3.5 is
solvable (i.e. the matrix is invertible). To improve tracking robustness, we propose an
improvement over the original ICP algorithm, adding a correction step such that if the
ICP fails, taking advantage from the fact that our ROI is patient’s head, we use a head
pose estimation to give a new initial guess to the ICP to compute correctly the current
transformation.

The use of the head pose estimation is shown in Algorithm 1. Given the previous
depth frame Dprev and the current depth frame Dcurr, the head pose estimation is used
to estimate head orientation (Rprev and Rcurr) and head center (Hcprev and Hccurr) of
them. The head centers are converted from camera to global coordinates (lines 4 and
5). The incremental rotation matrix Rinc and the translation tinc between the previous
and the current head center are computed (lines 6 and 7). The translation tinc is added
to the current global translation tlive (line 8). The implicit surface is then raycasted to
generate a new view (i.e. new previous depth frame) (line 9). The raycasted view is
rotated around Hccurr with Rinc (line 10). Finally, we apply again the ICP to estimate
the current Tlive (line 12).

As we propose the use of this approach in an AR environment, Algorithm 1 must
run in real-time when executed to maintain user’s interactivity with the application. A
real-time head pose estimation algorithm was proposed in [Fanelli et al. 2011]. In there,
head pose estimation is treated as a classification problem. Decision trees are used to split
an original problem into smaller ones, solving each one of them with simple predictors.
In this representation, each node of the tree consists of a test which directs the problem
to left or right child. During training, trees are built to favor good predicitions. Standard
decision trees suffer from overfitting and trees trained randomly (i.e. random regression
forests) can be applied to solve this problem [Breiman 2001]. Fanelli et al. trained
random forests to estimate head pose from low-quality depth images [Fanelli et al. 2011].
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Algorithm 1 ICP + Head Pose Estimation algorithm

1: for every input frame do
2: run the ICP algorithm.
3: if ICP failed then
4: headPoseEstimator(Dprev, ∗Rprev, ∗Hcprev)
5: headPoseEstimator(Dcurr, ∗Rcurr, ∗Hccurr)
6: Rinc ← RcurrR

−1
prev.

7: tinc ← Hcprev −Hccurr.
8: tlive ← tlive + tinc.
9: raycast the TSDF using Tlive to generate the new depth frame.

10: rotate the raycasted view around Hccurr with Rinc.
11: run again the ICP algorithm.
12: end if
13: end for

To train the trees, each depth map was annotated with labels indicating head center and
Euler rotation angles. These labels were estimated automatically using ICP after a 3D
facial reconstruction. After the labeling and training, the head pose can be estimated
letting every image region to vote it. The vote consists of a classification whether the
image region contains a head and a retrieval of a Gaussian distribution computed during
the training and stored at the leaf. This probabilistic approach achieves high accuracy
and runs in real-time on CPU. Therefore, by using this approach, we could develop a
robust real-time face tracking algorithm for a MAR application.

3.4 RESULTS AND DISCUSSION

In this section we analyze performance, accuracy and tracking robustness of the marker-
less tracking algorithm. Not only for the tests presented in this chapter, but for the entire
dissertation, we used an Intel® CoreTM i7-3770K CPU@3.50Ghz, 8GB RAM, NVIDIA
GeForce GTX 660. Also, we used the open-source C++ implementation of the Kinect-
Fusion [Izadi et al. 2011] released by PCL project [Rusu and Cousins 2011]. User’s head
was reconstructed with KinectFusion using a grid with volume size of 70cm×70cm×140cm
and resolution of 5123.

3.4.1 Performance Evaluation

Figure 3.2 shows the time measured for each step of the 3D reference model reconstruc-
tion. In summary, it takes ≈ 25ms per frame (40 FPS) and requires about 15 seconds to
be completed if the user has provided sufficient viewpoints. This processing time could be
improved by reducing KinectFusion’s volume resolution from 5123 to 2563, which would
reduce 3D reference model accuracy as well. As can be seen in Figure 3.3, by using the
resolution 2563, 3D reference model reconstruction takes ≈ 19ms per frame (53 FPS).
When head pose estimation was used, the total frame was increased in 40ms, dropping
application’s performance to 15 FPS (for resolution of 5123) or 17 FPS (for resolution of
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2563).

Figure 3.2 Performance results measured in average milliseconds for each step of our approach.
OS - Other Steps (i.e. display timing, Kinect latency), FS - Face Segmentation, VNG - Ver-
tex and Normal Map Generation, LT - Live Tracking, KFI - KinectFusion’s grid integration,
KFR - KinectFusion’s grid raycasting. Times were measured running our approach with the
KinectFusion’s grid in resolution 5123.

3.4.2 Accuracy Evaluation

3D reference model reconstruction has accuracy of ≈ 10mm [Meister et al. 2012]. Live
tracking has an accuracy of ≈ 2mm, which is not incremental (i.e. the error is not
accumulated during frames). The accuracy of the registration between virtual data and
reference model depends on user’s adjustment. Given these accuracy measurements, we
observe that, visually, the registration is accurate. In this sense, the full MAR solution
proposed here may be suitable for training purposes. However, scenarios in which high
accuracy is required for the MAR environment, such as the ones for surgery procedures,
our solution is not recommended.

The accuracy of the head pose estimation is the same as stated in Fanelli’s paper
[Fanelli et al. 2011]: angle error about 8 degrees in each axis; head center error about
10mm.

3.4.3 Tracking Robustness Evaluation

We can analyze tracking robustness for two different scenarios: fast translation and fast
rotation of user’s face.

When the user translated his face fastly in front of the camera, there was not sufficient
points at the same image coordinates and the ICP failed. Then, the head pose estimation
algorithm could give a correct initial guess to the ICP. This situation can be seen in Figure
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Figure 3.3 Performance results measured in average milliseconds for each step of the Kinect-
Fusion. KFI - KinectFusion’s grid integration, KFR - KinectFusion’s grid raycasting. Times
were measured running our approach with the KinectFusion’s grid in resolutions 2563 and 5123.

3.4.

Figure 3.4 Left image: The user translated his face fast. A small number of points were at
the same image coordinates and the ICP failed. Right image: By applying our approach we
solved this problem.

The algorithm ICP + Head Pose Estimation slightly improved the tracking perfor-
mance when the user rotated his face and the ICP failed. The reason is that the larger
the pose variation, the larger the non-overlapping region, and there are cases that the
ICP is not appropriate in the presence of non-overlapping regions even if the head pose
estimation provides the initial guess. When the tracking algorithm fails, as shown in Fig-
ure 3.5, the user needs to reposition his face to the tracking algorithm to align correctly
the raw depth data. One can use non real-time up-to-date algorithms, such as the Sparse
ICP [Bouaziz et al. 2013], to solve this issue, however this decision may decrease severely
application’s performance (i.e. in this case, less than 1 FPS).
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Figure 3.5 An example of tracking failure. The user needs to reposition his face to the tracking
algorithm to align correctly the raw depth data to the reference 3D model.

3.5 SUMMARY

In this chapter we have presented the MAR environment in which this work is based on.
We used the KinectFusion to reconstruct patient’s ROI and ICP algorithm to track it
by estimating the current rigid transformation that defines the motion between current
depth frame captured by the RGB-D sensor and the previous one represented by the 3D
reference model reconstructed. To improve tracking robustness, we have extended the
ICP algorithm by using a real-time head pose estimation algorithm to give the initial
guess to the ICP when it failed. From the tests conducted, we have shown that our
approach can handle more pose variations than ICP. In addition, we have shown that
the use of the head pose estimation proposed in [Fanelli et al. 2011] is suitable for AR
applications, as it runs in real-time.

Once with the MAR environment properly designed, we must see how to add support
for medical volume rendering and consequently on-patient medical data visualization.





Chapter

4
ON-PATIENT VOLUMETRIC MEDICAL DATA

VISUALIZATION

In this chapter we present the on-patient medical data visualization solution proposed in
this dissertation. This chapter covers the methods proposed on the following authored
publications [Macedo et al. 2014c, Macedo and Apolinario 2014b, Macedo et al. 2014a],
[Macedo et al. 2014b, Macedo and Apolinario 2014a]. An overview of the proposed MAR
environment with support to on-patient medical data visualization can be seen in Figure
4.1.

Reference ModelMedical VolumeVolume’s ROI

Contextual Anatomic

Mimesis Smooth Contours

Visible Background

on CT Data

Visible Background

on MRI Data

Medical Volume Rendering

Focus + Context Visualization

Volume-to-Patient

Registration(Optional)

Figure 4.1 Overview of the proposed solution.
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4.1 VOLUME RENDERING

Volume rendering is concerned with techniques for generating images from volume data
[Hadwiger et al. 2006]. The majority of volume rendering algorithms are based on the
volume rendering integral. This formulation is based on an emission-absorption optical
model as shown in Equation 4.1.

R(sf ) = R0e
−

∫ sf
s0 k(t)dt +

∫ sf

s0

q(s)e−
∫ sf
s k(t)dtds. (4.1)

The radiance energy R(sf) is the result of integrating from entry point into the vol-
ume (s = s0) to the exit point toward the camera (s = sf ). The absorbed energy and
emission components are represented by the absorption and emission coefficients k and q
respectively. The term R0 is the radiance in the entry point s0.

The volume is rendered according to a compositing scheme, which gives the numerical
computation of the volume rendering integral:

R(D) =
n∑

i=0

ci

n∏
j=i+1

Trj (4.2)

where ci = R(si) and Tri = Tr(si−1, si) = e
−

∫ si
si−1

k(t)dt
.

Two of the most known compositing schemes are the direct volume rendering (DVR)
and the maximum intensity projection (MIP). The DVR is the discretization presented in
the Equation 4.2 and it is based on a front-to-back or back-to-front compositing scheme.
The most common is the front-to-back DVR:

Cdst = Cdst + (1− σdst)Csrc (4.3)

σdst = σdst + (1− σdst)σsrc (4.4)

where Cdst = ci+1, Csrc = ci, σdst = 1 − Tri+1, σsrc = σi given the voxel i being
traversed. C represents the color contribution and σ the opacity of the voxel (see
[Hadwiger et al. 2006] for more details).

Different from the DVR compositing scheme, MIP is computed according to the fol-
lowing compositing equation:

Cdst = max(Cdst, Csrc) (4.5)

The final result is the maximum color contribution along a ray [Hadwiger et al. 2006].
This compositing scheme is particularly important in virtual angiography (i.e. the display
of the vessel structures in medical scans) [Prokop et al. 1997].

The volume data is usually represented as a 3D texture with associated colors. These
are color components that have already been weighted by their corresponding opacity
values [Blinn 1994]. This representation allows the generation of images with higher
quality than the solution based on 2D texture because of the interpolation performed on
the discrete set of color points [Hadwiger et al. 2006]. Moreover, it avoids the presence
of color bleeding artifacts [Wittenbrink et al. 1998].
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The scalar values stored in the volume data represent some spatially varying physical
property. Transfer functions can be applied on these scalar values to improve user’s
visual perception and data interpretation of the volume. The transfer functions map the
values to colors in RGB space. In this sense, pre-integrated transfer functions are used
to capture the high frequencies introduced in the transfer functions with low sampling
rates [Engel et al. 2001].

To render the medical data based on DVR or MIP, the ray casting algorithm proposed
initially by [Levoy 1988] and implemented in GPU by [Kruger and Westermann 2003,
Roettger et al. 2003] is the technique most used. The start positions of the ray are
obtained by rasterizing the front faces of the volume bounding box and the exit positions
of the ray are obtained by rasterizing the back faces of the bounding box. Direction
is computed from the difference between the exit and start positions. Ray casting is
performed by sampling the space in-between the volume bounding box through the use
of an adaptive sampling rate. Ray casting can be done on GPU in a single rendering pass
on the fragment shader [Hadwiger et al. 2009].

One of the main advantages of ray casting is that it is flexible in the sense that
many other techniques can be integrated to improve performance or image quality of the
rendering.

The most common techniques to optimize performance of the volume rendering are
empty space skipping, adaptive sampling and early ray termination. For empty space
skipping, the volume is subdivided into an octree. In order to detect empty spaces,
each block stores the minimum and maximum scalar values. The visibility of each block
can be determined after evaluation of the transfer function [Li et al. 2003]. If the block
is considered invisible, the step size of the ray can be increased, skipping the region
where it is already known that there is not relevant data to be processed. Otherwise,
by using adaptive sampling, the step size of the ray can be adaptively decreased to
compute accurately the composition scheme. Early ray termination stops ray traversal if
the opacity accumulated is too high, situation in which the contribution of new samples
is irrelevant for the final rendering.

To improve image quality, several techniques can be used. To reduce sampling arti-
facts, a stochastic jittering (i.e. random ray-start off-setting) is commonly applied to the
ray start position. To reduce the filtering artifacts, fast GPU-Based tri-cubic filtering
[Sigg and Hadwiger 2005, Ruijters et al. 2008] and GPU pre-filter for accurate tri-cubic
filtering [Ruijters and Thévenaz 2012] can be used to replace native tri-linear filtering.

The volume rendering integral presented in the Equation 4.1 does not account for illu-
mination effects caused by external light sources. Such illumination effects, however, add
a great deal of realism to the resulting images. This is specially important in an AR envi-
ronment, where this illumination effect serves as an approximation for the illumination of
the real scene. To compute local illumination, it is used Blinn-Phong shading [Blinn 1977]
with on-the-fly gradient computation by central or forward differences on the GPU. Non-
polygonal iso-surface rendering is realized by first hit ray-casting. The local illumination
is included in Equation 4.1 by extending the emission coefficient q(s) = qea(s) + qil(s),
where qea(s) is the emission coefficient of the emission-absorption model and qil(s) is the
coefficient that adds the local illumination [Hadwiger et al. 2006].
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Sometimes, the goal of the volume rendering is to extract and emphasize important
parts of a volume. This issue can be solved by using volume clipping, which cuts away
unimportant regions of the volume [Hadwiger et al. 2006]. In general, the volume is
clipped according to one of six planes parallel to the faces of the volume bounding box.

Finally, our approach supports DVR and MIP compositing schemes, iso-surface ren-
dering, single-pass GPU ray casting, empty space leaping of non-visible voxels, early ray
termination and adaptive sampling to optimize performance, stochastic jittering, tri-cubic
filtering, pre-integrated transfer function and local illumination to improve image quality,
and other features such as volume clipping.

4.1.1 Context-Preserving Volume Rendering

When the medical volume is rendered based on DVR, at first glance, the final rendering
may not be the result desired by the user. In this sense, transfer functions can be used
to change the visual aspect of the volume, enhancing the features of the medical data.
However, the process to find an appropriate transfer function can be a complex and time-
consuming task. An alternative is to pre-segment the volume in regions of interest and
define transfer functions for these regions separately. This solution improves the quality
of the final rendering, but it is more time-consuming than defining the transfer function
without pre-segmentation. Therefore, it would be desirable in this context a new solution
fast, ease to handle and that provides good visual quality for the volume rendered.

Volume clipping can be used to reveal hidden structures of the volume by completely
cutting away occluding areas. Traditionally, clipping planes are used to perform this
task in a faster and intuitive way [Hadwiger et al. 2006], although several up-to-date
techniques, such as [Wu et al. 2013], have proposed alternatives to the plane as a cutting
object. However, when clipping a volume, some important information can be lost in this
process if the information is located in the cutted region. Therefore, volume clipping is
not the best way to enhance the visualization of the volume.

Illustrative volume rendering is a field which aims to improve the visualization of volu-
metric structures by the use of non-photorealistic strategies integrated into the rendering
algorithm. Inspired by the fields of volume clipping and illustrative volume rendering,
Bruckner et al. proposed the context-preserving volume rendering [Bruckner et al. 2005,
Bruckner et al. 2006], which uses a function of:

1. Shading intensity - to decrease opacity in regions which receive high illumination
intensity;

2. Gradient magnitude - to preserve and enhance contours;

3. Distance to the eye point - to simulate the cut effect of a clipping plane;

4. Previously accumulated opacity - to turn structures located behind semi-transparent
regions more opaque.

This model is able to reduce the opacity in less important data regions and it is
controlled by two user-specified parameters: one to explore the dataset and another to
control the sharpness of the visualization.
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In our MAR environment, we use this technique not only to enhance features of the
volume, but also to separate some structures in the visualization, such as bones, soft
tissue and organs (Figure 4.1). This process can be done just by controlling the two
parameters mentioned before.

4.2 MEDICAL VOLUME-TO-PATIENT REGISTRATION

Global coordinate system

Mref

Mref coordinate system

Live Stream

Current depth frame
coordinate system

Medical Volume

Vbase coordinate system

Pose Estimated

Pose estimator
coordinate system

TmedTlive Troi

Figure 4.2 Relationships among the coordinate systems used for medical volume-to-patient
registration.

After volume rendering, the next step is the placement of the medical data into the
scene (Figure 4.1). However, as will be discussed in Section 4.5, in this work the patient’s
ROI is augmented with a generic volumetric data instead of his own. Therefore, we do
not use an automatic registration method. Instead, we propose a new method for coarse
registration between medical volume and patient’s 3D reference model. Then, the result
can be fine adjusted by the user. An overview of the coordinate systems used for the
coarse registration process is shown in Figure 4.2.

The process to position the medical volume into the patient is shown in Algorithm 2.
Given the reference model Mref extracted from KinectFusion’s volume and the medical
volume inside a normalized unitary bounding box, the scale factor Smed can be computed
for each axis based on the average size of the bounding box sides of Mref (line 1). Next,
the centroid cref is computed from Mref (line 2). The rotation matrix of the medical
data Rmed is initially set to be a pre-defined initial pose R0 (line 3). Pose Rroi and center
of mass croi of patient’s ROI are estimated with a trained pose estimator based on the
region of interest (lines 4-5). croi is assigned to be the translation vector of the region of
interest: troi (line 6). As the ROI in this work is a head, we estimate these values from
Dcurr captured by the Kinect sensor with the real-time head pose estimation proposed in
[Fanelli et al. 2011]. The centroid of the ROI’s center of mass rotated crot is computed
(line 7). Because we want the centroids of the medical data and the reference model to
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be the same (i.e. at the same position), and assuming that the initial centroid of the
volume is in the origin, the translation vector of the medical data can be computed by
the subtraction of cref and crot (line 8).

Algorithm 2 Estimating coarse pose

1: Smed ← compute scale factor from Mref .
2: cref ← compute centroid from Mref .
3: Rmed ← R0.
4: Rroi ← estimate rotation matrix for the region of interest.
5: croi ← estimate centroid of the region of interest.
6: troi ← croi.
7: crot ← Rroicroi.
8: tmed ← cref − crot.

After the computation of the coarse pose, the medical volume data V o can be posi-
tioned into the scene for every frame by the following expression:

V olive = TliveTmedTroiV obase. (4.6)

where Tlive is the 3D rigid transformation estimated by the tracking algorithm. Troi =
[Rroi|troi] is the 3D rigid transformation that registers the medical data in relation to the
pose measured for the region of interest, V obase means the volume in an initial position,
and Tmed, which is defined by the following equation:

Tmed = [Rmeddiag(Smed)|tmed]. (4.7)

is the 3D transformation that gives the coarse placement of the volume into the scene.
The function diag creates a 3×3 diagonal matrix from the input vector. The final result,
V olive, is the volume aligned to the patient in the current frame.

Once in the origin on the unitary bounding box, the sequence of transformations can
be applied to place the volume on the current pose of the patient’s ROI. The user can
adjust volume’s position and orientation by controlling Tmed.

4.3 FOCUS + CONTEXT VISUALIZATION

An application for on-patient medical data visualization requires a special attention to
the mixing between real (i.e. patient’s image captured by the sensor) and virtual (i.e.
patient’s anatomy stored in the computer) entities of the AR environment. Instead of
superimposing the virtual content onto patient’s real image, a better solution is to show
a part of the virtual anatomy as a focus region in the context of the patient’s body.
In this sense, our MAR environment supports four state-of-the-art F+C visualization
techniques, which are described in the next subsections. We focus on the description of
the last three techniques (i.e. smooth contours, visible background on CT and MRI data)
as they were developed as novel contributions for this dissertation.
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4.3.1 Contextual Anatomic Mimesis

Bichlmeier et al. proposed the Contextual Anatomic Mimesis (CAM) to improve depth
perception in a medical AR application [Bichlmeier et al. 2007]. First, the medical data
is not entirely overlaid over the patient’s image. Focus point and radius are defined by
line of sight. Together, they act like a mask in the AR scene, in which the medical data
can be visualized only inside it. Next, Bichlmeier and colleagues proposed the control
over the AR visualization by adjusting the following parameters:

1. Curvature (αcurv) - The curvature of the patient’s surface allows regions with high
curvature (e.g. wrinkled, bumpy and sinuous regions) to remain visible in the final
rendering;

2. Distance Falloff (αdistFalloff ) - The distance between each point on the surface and
the focus point allows a smooth visualization between the patient’s medical data
and the real image;

This method was integrated in our environment, as can be seen in Figures 4.1 and
4.3, because it has already proven to provide high-quality on-patient medical data visu-
alization [Kutter et al. 2008, Wieczorek et al. 2010].

Figure 4.3 Contextual Anatomic Mimesis applied on our environment.

4.3.2 Smooth Contours

One of the issues related to the integration of the volume clipping into the AR environment
is the presence of the visible edge located in the intersection between the volume and the
clipping plane. As discussed in [Bichlmeier et al. 2007], it is desirable a smooth transition
between the volume in the focus region and the rest of the AR scene. In order to achieve
this goal, it is proposed here a new method for F+C visualization based on smooth
contours, an algorithm that adds a smooth transition between the image resulting from
the volume clipping and the context region. An overview of this algorithm can be seen
in Figure 4.4.
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Figure 4.4 Smooth contours pipeline.

The image of the volume is converted into a gray-scale image and then is binarized by
a pre-defined threshold tb, which operates on the gray intensity of each pixel (empirically
we have found tb = 0.1 a good threshold for such task). The contours of the binarized
image are extracted by using the Sobel edge-detector filter. The contours are blurred by
a n-order two-pass gaussian blur. From empirical tests, n = 3 produced the best results.
The resulting image αsmoothContours is a mask that gives a weight to the blending between
the volume contours and the scene. Also, a factor wc can be dynamically defined by
the user to adjust the level of smoothing in the contours (Equation 4.9). It ranges from
0, where the contours are rendered, to +∞, where the contours are smoothed and then
suppressed in the final rendering. All these operations run on the shader.

The influence of the smooth contours can be seen in Figures 4.1 and 4.5. It is visible
that the proposed algorithm adds a smooth transition between the volume and the real
scene.

This method can be easily integrated with the F+C method proposed by Bichlmeier
et al. [Bichlmeier et al. 2007]. An example of the result of the proposed integration can
be seen in Figure 4.6.

Taking advantage from the clipping effect, we propose another two methods for F+C
visualization, now based on visible background. In these methods, we take advantage
from the type of scanning (CT or MRI) to enable new ways for physicians to explore the
medical data on the patient.
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Figure 4.5 Influence of the smooth contours in the final rendering. Left image: Direct volume
rendering with clipping. Right image: Volume clipped rendered according to the proposed
algorithm.

Figure 4.6 F+C visualization based on distance falloff parameter proposed by CAM algorithm
(left image) and its extension with the smooth contours (right image).

4.3.3 Visible Background on CT Data

In volume rendering, CT data can be used to enable the visualization of internal structures
such as bones. In the case of a head, this structure can be the patient’s skull. By designing
an appropriate transfer function, the skull can be visualized apart from the soft tissue of
the volume. In this situation, it is desirable to see the real background scene when looking
at the region between the skull and the soft tissue or the soft tissue itself, because both
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are context regions of the volume and the virtual background can be seen, depending
on the transfer function chosen (Figure 4.1). An overview of the proposed approach to
enable this kind of visualization can be seen in Figure 4.7.

Medical Volume Isubtraction

Background Scene

Dilated Dref

(shown in binary)

Figure 4.7 Visible Background on CT data overview.

For this kind of F+C visualization, the background scene is captured and stored in the
memory. Next, the image of the volume after clipping is binarized and sent to the shader
as a foreground subtraction mask Isubtraction. This mask identifies the region where the
background can be visualized based on the gray intensity of the volume. In our case, Dref ,
the depth image of the 3D reference model, does not overlap perfectly the patient’s ROI.
To solve this problem, Dref is dilated only on its contours to preserve the original depth
of the 3D reference model and sent to the shader to represent the patient’s ROI. The
pseudocode of the shader to render the F+C visualization based on visible background
on CT data can be seen in the Algorithm 3, lines 1-15, 22-24.

The color image captured from the Kinect sensor is rendered in the region that does
not represent the patient’s ROI (i.e. where the depth of the 3D reference object is 0, as
it was not reconstructed) (lines 2-4). The captured color image is also rendered when the
volume is occluded and the occludee has depth (e.g. it is not in a hole region) (lines 5-7).
Next, if the fragment is in the subtraction mask region, the volume or the background
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scene are rendered. Otherwise, the fragment is in the clipped region and the real color
image is rendered (lines 23-24). The gray intensity is computed from the volume (by
the gray function) and assigned to β. Considering that the bone is rendered with a
gray level greater than the soft tissue’s and than a user-defined threshold wgrayLevel, it is
rendered without the background scene. As the bone and the soft tissue have different
gray intensities, wgrayLevel can be adjusted to render the bone with its real color and the
soft tissue linearly interpolated with the background scene (lines 8-15).

Algorithm 3 F+C visualization based on visible background

1: for in parallel do
2: if Dref == 0.0 then
3: return Ireal;
4: end if
5: if Dlive < Dref and Dlive != 0.0 then
6: return Ireal;
7: end if
8: if Isubtraction == 1.0 then
9: if CT data then

10: grayLevel← gray(Imedical);
11: β ← grayLevel;
12: if grayLevel < wgrayLevel then
13: return β ∗ Ibackground + (1− β) ∗ Imedical;
14: end if
15: return Imedical;
16: else
17: if Imedical == 0.0 then
18: return Ibackground;
19: end if
20: return Imedical;
21: end if
22: end if
23: return Ireal;
24: end for

4.3.4 Visible Background on MRI Data

In volume rendering, MRI data can be used to enable the visualization of internal struc-
tures in the body such as organs. In an AR environment, the best way to visualize these
data is by clipping not only the volume but also the corresponding region on the patient’s
image (Figure 4.1). In this situation, it is desirable to see the background scene in the
region clipped. An overview of the proposed approach to visualize this kind of scenario
can be seen in Figure 4.8.

The background scene is saved. Next, taking advantage from the volumetric repre-
sentation of the KinectFusion, in which the 3D reference model is stored, patient’s ROI
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Figure 4.8 Visible Background on MRI data overview.

is clipped. The algorithm to render an image from the clipped 3D reference model can
be seen in Algorithm 4. This algorithm is an extension of the pseudocode presented
in [Izadi et al. 2011]. The algorithm ray casts the TSDF and when the ray traverses a
zero-crossing position and it is in the clipped region, the voxel’s corresponding pixel is ren-
dered in the output image. To mitigate the presence of visible artifacts at the intersection
between the clipping plane and the 3D reference model, traditional adaptive sampling is
employed to reduce step size of the ray when it is near the zero-crossing position (i.e.
silhouette of the 3D reference model stored in the volume). We check this proximity by
using a specific threshold (tprox) over the TSDF stored at the voxel g being traversed
(gtsdf ). When near the zero-crossing, step size of the ray casted is reduced to a value ws

to perform a more accurate traversal. From empirical tests, we have set tprox = 0.5 and
ws equals to one-fourth of the original step size. The output image from this algorithm is
Isubtraction, as it will be used to indicate whether the background image must be rendered.
The medical volume is clipped separately and sent to the shader. Both Isubtraction and
Dref are dilated because of the problem of overlapping described before. The pseudocode
of the shader to render the F+C visualization based on visible background on MRI data
can be seen in the Algorithm 3, lines 1-8, 16-24.

The color image captured from the Kinect sensor is rendered in the same way as
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described in visible background on CT data. The main difference here is that if the
subtraction mask is active (i.e. patient’s ROI is clipped) and if there is medical data to
be visualized, it is rendered. Otherwise, the background image is rendered.

Algorithm 4 Raycasting the clipped region of the 3D reference model volume

1: for each pixel u ∈ output image Isubtraction in parallel do
2: Isubtraction(u)← 0;
3: raystart ← back project [u, 0]; convert to grid pos
4: raynext ← back project [u, 1]; convert to grid pos
5: raydir ← normalize (raynext − raystart)
6: raylen ← 0
7: g ← first voxel along raydir

8: while voxel g within volume bounds do
9: raylen ← raylen + stepsize

10: gprev ← g
11: g ← traverse next voxel along raydir

12: if gtsdf < tprox then
13: stepsize← ws

14: end if
15: if zero crossing from g to gprev and g is in the clipped region then
16: Isubtraction(u)← 255;
17: end if
18: end while
19: end for

4.4 FINAL RENDERING

In a naive implementation, when the volume is clipped and its image is rendered in an
AR environment, we obtain a result similar to the one presented in the Figure 4.9, left
image, where there is no occlusion between the internal region of the volume visible after
the clipping and the patient. If desirable, this effect can be removed in the single-pass
ray casting, as shown in Algorithm 5, which is an extension of the pseudocode for ray
casting algorithm presented in [Hadwiger et al. 2006]. We check if the first hit position of
the ray in the volume is in the clipped region. If it is, the ray is discarded from rendering,
otherwise, the ray traverses the volume as normally done in the standard ray casting
algorithm. The result of the application of this algorithm can be seen in Figure 4.9, right
image.

After volume rendering, color frame buffer is sent to the shader for blending with the
patient’s RGB data coming from the RGB-D sensor. For CAM and smooth contours
F+C visualization techniques, blending is done by the following linear interpolation:

Ifinal = βIreal + (1− β)Imedical (4.8)

where Ireal is the image captured by the sensor, Imedical is the image generated by the
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Figure 4.9 Occlusion between volume’s internal structures and the patient’s region of interest.
Left image: Direct volume rendering with clipping. Right image: Volume clipped rendered
according to the proposed algorithm.

volume rendering applied to the medical volume, and Ifinal is the resulting image. In our
approach, β is defined dynamically, for every fragment/pixel, by the F+C visualization
techniques mentioned before, according to the following equation:

β = clamp(max(αcurv, αdistFalloff , wcαsmoothCont)) (4.9)

clamp is a function that clamps its input parameter to the interval [0,1].
For the visible background-based F+C techniques, the shader proposed in Algorithm

3 is used, as Equation 4.8 is not valid because it does not include background rendering.
To solve occlusion, Dcurr and Dprev are used. Where Dcurr is in front of Dprev, volume

is the occludee. Otherwise, it is the occluder.

4.5 RESULTS AND DISCUSSION

In this section we analyze visual quality and performance of the whole approach. Par-
ticularly, we evaluate the techniques employed for volume rendering and each one of the
main methods for F+C visualization discussed in this dissertation.

4.5.1 Experimental Setup

The medical dataset used is a CT volumetric data of a head from the Visible Human
Project [National Library of Medicine 2014] of resolution 128 × 256 × 256 and a MRI
data of a head from the MRI Head available in Volume Library [Volume Library 2014]
of resolution 2563. Both are of typical resolution of a head medical volume and therefore
do not affect our performance evaluation.

We evaluate the performance and visual quality of the proposed techniques in a sce-
nario where the patient’s head is augmented with a volumetric dataset of a head. The
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Algorithm 5 Solving the occlusion between patient and volume’s internal structures

1: Determine volume entry and exit positions.
2: Compute ray direction.
3: while ray position in volume do
4: bool clip ← check if the current position is in clipped region;
5: if not first hit in volume then
6: Access data value at current position.
7: if opacity > threshold and clip is true then
8: return;
9: else

10: first hit in volume;
11: end if
12: end if
13: if clip is false then
14: Access data value at current position.
15: Compose color and opacity;
16: end if
17: Advance position along ray;
18: end while

use of a generic volume does not affect our visual quality evaluation since the volume is
scaled and positioned semi-automatically by the user.

4.5.2 Performance Evaluation

Figure 4.10 shows the time measured for each step of the MAR live tracking. It takes
≈ 22ms per frame (45 FPS). Occlusion computation, which transfers data stored in GPU
to CPU, converts 3D reference model and 3D object coming from Kinect to the same
coordinate system and sends their depth maps to the shader, takes 5ms in our approach.
Meanwhile, our optimized direct volume rendering takes the lowest time.

As the Kinect sensor provides depth and color maps at 30 FPS, our approach can pro-
cess every input frame during 3D reference model reconstruction and MAR live tracking
with on-patient medical data visualization. Therefore, we can conclude that our approach
runs in real-time.

We have observed that the user takes about 10 seconds to position and adjust the
volume in the scene. The algorithm for coarse medical volume-to-patient registration is
used only once (i.e. at the transition between 3D reference model reconstruction and
on-patient medical data visualization) and takes 60ms.

In a second test, we evaluated the influence of the volume resolution on the overall
performance of our approach. It has never dropped below 29 FPS using medical and
KinectFusion volumes of resolution 2563 and 5123 with DVR. Therefore, we can use the
maximum KinectFusion’s volume size to generate a more accurate 3D reference model.

In a third test, the average processing time for various volume rendering compositing
schemes was measured. The performance results can be seen in Figure 4.11. From an
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Figure 4.10 Performance results measured in average milliseconds for each step of our ap-
proach. OS - Other Steps (i.e. display timing, Kinect latency), OCC - Occlusion Computation,
VNG - Vertex and Normal Map Generation, LT - Live Tracking, VR - Volume Rendering,
KFR - KinectFusion’s grid raycasting. Times were measured running our approach with the
KinectFusion’s grid in resolution 5123 and medical dataset in resolution 2563.

analysis on application’s performance, if the volume rendering takes less than 10ms, the
application still keeps the real-time performance. By assuming that the typical resolution
of a head medical volume is 2563 and considering the reported processing times in Figure
4.11, we conclude that our approach runs in real-time because its performance is greater
than 30 FPS. However, with a volume of resolution 5123, depending on which mode is
chosen, we have a loss in the performance, dropping application’s performance to 20 FPS
in the worst scenario.

As described in Section 4.1, the volume is stored as a discrete 3D texture. When
the ray is casted into the volume, it accesses the space between the discrete samples
of the volumetric data. In this case, the trilinear interpolation is used to reconstruct a
continuous representation of the volume based on the eight closest neighbours samples
of that space. This is the most expensive operation in volume rendering based on ray
casting as it requires eight memory access to perform the interpolation. Based on this
statement, it is possible to evaluate the variation in performance of the different volume
rendering modes.

In the simplest DVR, trilinear interpolation is performed only once for each position
of the ray casted. Therefore, this is the rendering mode which takes the lowest processing
time. As consequence, it produces the simplest visual effects, which can be seen in Figure
4.12-A.

For MIP, a variation of DVR mode, trilinear interpolation is also done only once.
Therefore, it has the same performance measured for DVR mode.

In the non-polygonal iso surface rendering, Blinn-Phong shading is computed when the
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Figure 4.11 Performance results measured in average milliseconds for various volume render-
ing compositing schemes. DVR - Direct Volume Rendering. MIP - Maximum Intensity Projec-
tion. IsoS - Non-Polygonal Iso Surface. TF - DVR + Transfer Function with Pre-Integration.
LI - DVR + Local Illumination via Blinn-Phong shading. CP - Context-Preserving Volume
Rendering. TriCubic - Fast Tricubic Filtering.

ray traverses a voxel with isovalue greater than a threshold defined semi-automatically.
The normal vector for a given voxel is computed by the normalization of the central
differences of the neighbouring voxels. This gradient estimation requires six trilinear
interpolations. However, as it is not computed for every voxel being traversed, it does
not increase significantly the computational cost of the volume rendering. An example
of non-polygonal iso surface rendering can be seen in Figure 4.12-D.

In the DVR with pre-integrated transfer function, after the trilinear interpolation of
the voxel, the scalar value of the previous and current voxel being traversed are used
as a look-up in a 2-D pre-integration table. This lookup is performed with a bilinear
interpolation. It increases the volume rendering processing time to 15 ms per frame
and slightly decreases the performance of the application to 35 ms per frame (28 FPS).
Despite of this fact, we have a more pleasant visualization of the volume. An example of
such effect can be seen in Figure 4.12-B.

In the DVR with transfer function and local illumination, for every voxel being tra-
versed, the transfer function is accessed (with a bilinear interpolation) and the illumina-
tion is computed (with six trilinear interpolations). These interpolations decrease signif-
icantly the performance of the volume rendering to 30 ms per frame and the application
to 50 ms per frame (20 FPS), which is not prohibitive, as the user can still interact with
the application with some delay. In the final result, the illumination effects add realism
to the resulting image. An example can be seen in Figure 4.12-C.

Context-Preserving volume rendering adds some computation for DVR with transfer
function and local illumination. However, there is not a new trilinear interpolation to be
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Figure 4.12 Some of the visualization options. A) Direct volume rendering (DVR). B) DVR
with pre-integrated transfer function. C) DVR with pre-integrated transfer function and Blinn-
Phong illumination. D) Non polygonal iso surface volume rendering.

Figure 4.13 A volume rendering (left) with stochastic jittering (center) and tri-cubic filtering
(right). The stochastic jittering reduces the wood-grain artifacts in the volume, however it is
almost imperceptible in this scene. The tri-cubic filtering smoothes the volume data, reducing
the artifacts present in the volume rendered with trilinear filtering.

performed. Therefore, Context-Preserving mode has the same performance as the case
mentioned above.
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Figure 4.14 Performance results measured in FPS for each one of the F+C visualiza-
tion techniques discussed in this dissertation. CAM refers to the technique proposed in
[Bichlmeier et al. 2007]. SC - Smooth Contours, VB on CT - Visible Background on CT Data,
VB on MRI - Visible Background on MRI Data. Times were measured running our approach
with the KinectFusion’s grid in resolution 5123.

In the test performed with a simple DVR and fast tri-cubic filtering, for every voxel
being traversed, eight trilinear interpolations are computed to return one tricubic in-
terpolation. These interpolations decrease the performance similarly to the situation of
transfer function and local illumination. The volume requires 30 ms per frame to be
rendered and the application requires 50 ms per frame (20 FPS). The visual influence of
the tri-cubic interpolation against the trilinear one can be seen in Figure 4.13.

The performance of our application for each F+C visualization technique can be seen
in the Figure 4.14.

The F+C visualization proposed in [Bichlmeier et al. 2007] runs in full real-time be-
cause it operates directly on the shader by changing two parameters described in the
Section 4.3.1. This result stays for the F+C visualization based on smooth contours,
which runs in full real-time because operates directly on the shader.

The F+C visualization based on visible background on CT data runs in full real-time
because most of this processing is done on the shader. The dilation applied on Dref is
negligible is terms of performance.

The F+C visualization based on visible background on MRI data is slightly slower
than the one based on CT data because of the ray casting performed on the KinectFusion’s
volume to render the clipped region. When it is desirable high-quality rendering, the step
size of the ray casted can be decreased, at the cost of loss in performance.

In applications where the performance is a critical factor, the volume size of the
KinectFusion’s volume can be reduced from 5123 to 2563. The drawback of this changing
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is the presence of more artifacts in the final composition, as the 3D reference model
will be reconstructed with a lower quality and it has a direct relation with the proposed
techniques for two reasons: it is the reference for live tracking and, from it, the region of
interest is dilated or clipped.

4.5.3 Visual Quality Evaluation

Figure 4.15 Occlusion support.

As mentioned in Section 4.1, the proposed approach supports various volume rendering
modes. Some of them can be seen in Figure 4.12. As discussed in previous subsection,
each one of them has some impact on application’s performance, although it still runs in
real-time for typical-sized medical data.

Figure 4.13 shows the influence of some techniques used to improve the image qual-
ity of the volume rendering. Artifacts are reduced without prohibitive increase in the
computational cost.

Original Volume
Iso Surface

Increasing parameters’ values

Figure 4.16 From volume to iso surface rendering by controlling context-preserving volume
rendering parameters.
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Increasing distance fall-off parameter

Increasing curvature parameter

Figure 4.17 Focus+Context visualization to improve human’s perception of the augmented
scene.

Figure 4.18 Influence of the parameter wc in smooth contours. (a) wc = 0. (b) wc = 2. (c)
wc = 4.

As can be seen in Figure 4.15, our approach supports occlusion at shader level. How-
ever, if the occluder overlaps more than 70% of the occludee, tracking may fail.

Influence of context-preserving volume rendering parameters in our application can be
seen in Figure 4.16. By increasing the values of the two parameters proposed by Bruckner
et al. [Bruckner et al. 2005, Bruckner et al. 2006], which control the exploration of the
dataset and the sharpness of the visualization, external structures of the volume (e.g.
soft tissue) become increasingly invisible, arising internal structures of the volume (e.g.
bone). Support for this kind of rendering is specially important in our application, as
a physician does not necessarily want to visualize the naive volume rendering, with soft



48 ON-PATIENT VOLUMETRIC MEDICAL DATA VISUALIZATION

tissue, organs and bones altogether.

Figure 4.19 Influence of the parameter wgrayLevel in visible background on CT data. (a)
wgrayLevel = 0. (b) wgrayLevel = 0.5 (c) wgrayLevel = 0.75. (d) wgrayLevel = 1.

Influence of F+C visualization parameters proposed in CAM technique in our MAR
environment can be seen in Figure 4.17. As the distance fall-off increases, transition
between real and virtual images becomes smoother and volume less visible. With respect
to the curvature term, as it increases, regions of the real scene with high curvature (i.e.
nose and glasses in Figure 4.17) remain visible even if they are inside the focus region.

The influence of the parameter wc in the F+C visualization based on smooth contours
can be seen in Figure 4.18. As wc increases, the transition between the volume and the
real scene becomes smoother. At the same time, the volume contours become less visible.

The influence of the parameter wgrayLevel in the F+C visualization based on visible
background on CT data can be seen in Figure 4.19. In this figure, it is visible that by
changing the parameter, the volume can be rendered almost completely invisible, with the
soft tissue linearly interpolated with the background scene or with the volume rendered
without the background scene.

For the F+C visualization for visible background on MRI data, a comparison between
different sampling schemes for ray casting can be seen in Figure 4.20. As the artifacts
become more visible during user’s movement, this figure shows patient’s ROI in some
positions and the presence of artifacts in the scenarios as well. By using fixed sampling,
the artifacts at the intersection between patient’s ROI and clipping plane are more visible
when the user rotates his head in front of the sensor. By using adaptive sampling, artifacts
are mitigated and the results are comparable to the best scenario, where the fixed step
size of the ray is too small. In this case, our method has best performance over the best
visual quality scenario, as our approach runs in 28 FPS, while ray casting with small step
size achieves 7 FPS only.

In Figure 4.21, we can see more examples of interactions with the F+C visualization
based on visible background with MRI data. In the upper clipping, there is a good
composition of the medical data in the scene. However, in the lateral clipping, it is
visible the 3D reference model clipping and the background rendering because of the
shadow cutting present on the final scene.
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Fixed sampling Adaptive sampling Best Scenario

Figure 4.20 Different schemes for F+C visualization based on visible background on MRI
Data.

Figure 4.21 Examples of interactions with the F+C visualization based on visible background
on MRI Data. Left image: Upper clipping. Right image: Lateral clipping.

4.6 SUMMARY

In this chapter we have presented a marker-free augmented reality approach for on-patient
volumetric medical data visualization which supports real-time performance, occlusion
and high quality for final rendering through the use of F+C visualization and volume
rendering techniques developed to improve quality for final volume rendering. An exten-
sive list of tests were conducted, validating both performance and visual quality for the
MAR environment. In this sense, we can take one step further existing state-of-the-art
works for on-patient medical data visualization adding support for photorealistic volume
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rendering based on local illumination components. Thus, we can improve even more
the visual quality of the augmented scene without affecting significantly application’s
performance.



Chapter

5
PHOTOREALISTIC LOCAL ILLUMINATION

In this chapter we present the photorealistic volume rendering solution based on local
illumination components proposed in this dissertation. This chapter covers the methods
described on Figure 5.1, which require a light probe and a webcam.

Light Probe

Webcam

Photorealistic On-Patient Medical Data Visualization

Figure 5.1 Photorealistic on-patient medical data visualization based on local illumi-
nation components. Webcam is courtesy of ©Phillips. Light probe is courtesy of
www.pearsonfaces.com.

5.1 SPHERICAL HARMONICS

When dealing with photorealistic rendering based on real local illumination components,
SH basis is commonly used due to its compact and efficient representation [Sloan 2009].
The SH basis functions are defined by the following equation:

γml (ω) = Km
l


√

2P−m
l (cosθ)sin(−mφ) if m < 0,√

2Pm
l (cosθ)sin(mφ) if m > 0,

P 0
l (cosθ) if m = 0.

(5.1)
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where Pm
l are associated Legendre polynomials, Km

l is a normalization constant, l is a
band index, and −l ≤ m ≤ l indexes basis functions in band-l.

A spherical function f(ω) can be projected onto the SH basis, resulting on the follow-
ing SH coefficient vector:

f =

∫
S2

f(ω)y(ω)dω (5.2)

where y is a vector of SH basis functions. A discretized version of Equation 5.2 is shown
as follows:

f ≈
∑
u,v

f(ωuv)y(ωuv)dωuv (5.3)

where f(ωuv) is the environmental lighting captured by the real scene and dωuv is defined
by:

dωuv = (2π/w)2sinc(θ) (5.4)

where w is the resolution of the (cropped) image which contains the environmental lighting
and the sinc function can be defined by:

sinc(x) =

{
1 if x < 0,
sin(x)

x
otherwise.

(5.5)

5.2 ESTIMATING LOCAL ENVIRONMENTAL LIGHTING

To lit the medical volume based on photorealistic local illumination, first we need to
capture the real-world environmental lighting. Traditionally, this step has been done
by using the light probe, a mirror ball which reflects the lighting from the environment
[Debevec 1998]. A separate webcam is used to capture the light probe image from the
real scene. We do not use the Kinect color camera for such task because it is pointed
directly to the user (instead of the light probe), it is not high-definition and we cannot
control focus. Then, the use of another webcam can easily overcome such issues. To
segment the light probe from the rest of the scene, we constraint the user to center and
capture the light probe in a sub-region of resolution w. The sphere image is cropped
and the image coordinates are normalized to the interval (u, v) = [−1, 1] × [−1, 1] and
mapped to spherical coordinates:

ωuv = (θ, φ) = (arctan(v/u), π
√
u2 + v2) (5.6)

and cartesian coordinates as well:

ωuv = (x, y, z) = (sinθcosφ, sinθsinφ, cosθ) (5.7)

After light probe capturing, SH basis is used to compactly represent the lighting and
its local illumination components (i.e. diffuse and specular terms).



5.2 ESTIMATING LOCAL ENVIRONMENTAL LIGHTING 53

Only nine SH coefficients f = (f0, f1, . . . , f8) are sufficient to reconstruct the spherical
function with enough accuracy [Ramamoorthi and Hanrahan 2001]. Therefore, y(ωuv)
can be efficiently computed from the cartesian coordinates:

y0 = 0.282095 y5 = 1.092548yz

y1 = 0.488603y y6 = 0.315392(3z2 − 1)

y2 = 0.488603z y7 = 1.092548xz

y3 = 0.488603x y8 = 0.546274(x2 − y2)
y4 = 1.092548xy

where the single indexing scheme for the basis coefficient yi is i = l(l + 1) + m. As
only nine SH coefficients are computed, three orders of SH basis are used, denoting a
reconstruction up to band l = 2 [Sloan 2009]. Moreover, to optimize performance, the
product y(ωuv)dωuv is precomputed.

From the SH coefficients computed from the real-world environmental lighting, the
medical volume can be lit according to diffuse and specular terms recovered from the real
scene. Diffuse lighting Dl can be computed as follows [Ramamoorthi and Hanrahan 2001]:

Dl = 0.429043f8(n
2
x − n2

y) + 0.743125f6n
2
z

+ 0.886227f0 − 0.247708f6 (5.8)

+ 0.858086(f4nxny + f7nxnz + f5nynz)

+ 1.023328(f3nx + f1ny + f2nz)

where n refers to the normal vector computed for each voxel of the volume being traversed.
To compute the specular lighting Sl, light dominant direction Ld and color Lc must

be computed from the SH coefficients [Nowrouzezahrai et al. 2011]:

Ld =


√√√√ 3∑

i=1

f2i

 (−f3,−f1, f2) (5.9)

Lc =

(
3∑

i=1

cLd[i]fi

)
/

(
3∑

i=1

(cLd[i])
2

)
(5.10)

where c = 1.44395 and Ld[i] is an indexing scheme for the given vector, treating each
cartesian coordinate [x, y, z] as a position [0, 1, 2].

As f(ωuv) is captured from light probe image, it is in fact a trichromatic vector.
Therefore, it can be conveniently redefined as f(ωuv) = (f(ωuv)

r, f(ωuv)
g, f(ωuv)

b), the
spherical functions for each color channel storing nine SH coefficients. By computing
Equation 5.9, we will obtain a trichromatic Ld. However, the dominant light direction
must be unique for the scene. So, standard grayscale conversion can be employed to result
in a single light direction. In the opposite case, each color channel for Lc is computed
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from Equation 5.10 as the SH coefficients f are trichromatic. Sl is computed by using Ld

and Lc in traditional Blinn-Phong shading. Final illumination for a given voxel on the
volume can be easily computed from Equation 4.1 as q(s) = qea(s) + Dl(n) + Sl(s, n)

By capturing the LDR image of the light probe, we have a loss in quality computing
Dl and Sl when compared to solutions which use HDR image. To minimize this problem,
we normalize the range [0, 255] for each color channel to [0, 1] and apply the most simple
reverse tone-mapping operator, linearization, over the LDR image to convert it to HDR
content. The linearization technique uses inverse gamma correction over the normalized
LDR image to compensate for non-linearities in the LDR representation. A visual com-
parison between using LDR, linearized LDR and HDR images for computing diffuse and
specular real lighting components can be seen in Figure 5.2. It is visible that by using a
reverse tone mapping operator, most of the original appearance lost in the HDR-to-LDR
conversion process is recovered.

Probe
Illumination from

LDR Image

Illumination from

Linearized LDR Image

Illumination from

HDR Image

Figure 5.2 Visual comparison between using LDR, linearized LDR and HDR probe images
when used for computing SH coefficients to lit a virtual sphere.

5.3 RESULTS AND DISCUSSION

In this section we analyze visual quality and performance of the whole approach with focus
on the impact of using photorealistic rendering. Light probe used is a common mirrored
sphere and Philips SPC530NC was used as webcam to capture light probe image. Medical
volumes and PC configuration are the same as used for the other evaluations listed in
this dissertation.
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5.3.1 Performance Evaluation

Figure 5.3 Performance results measured in average milliseconds for each step of our ap-
proach. OS - Other Steps (i.e. display timing, Kinect latency), OCC - Occlusion Computation,
VNG - Vertex and Normal Map Generation, LT - Live Tracking, VR - Volume Rendering,
KFR - KinectFusion’s grid raycasting, PR - Photorealistic Rendering (i.e. diffuse and specular
terms capturing from light probe image). Times were measured running our approach with the
KinectFusion’s grid in resolution 5123 and light probe image of resolution w = 128.

Figure 5.3 shows the average time measured for each step of the on-patient medical
data visualization application. It takes ≈ 33ms per frame, therefore running in real-
time (30 FPS). Volume Rendering (VR) is one of the steps which takes most time to
be processed because, for photorealistic rendering to make sense, we have to enable local
illumination on the volume, which is already known to decrease application’s performance.
Photorealistic rendering (PR) in which the light probe image is cropped, normalized and
from there it is computed the specular and diffuse lighting components based on SH
coefficients takes 5ms for a resolution of 1282 pixels of the cropped image.

We have also evaluated the performance impact of the cropped image resolution w.
The results can be seen in Figure 5.4. In this figure, we evaluated the influence of
w for only two scenarios: DVR with local illumination and transfer function. As can
be seen from Figure 4.11, we have a real changing on application’s performance when
activating those modes, because of the number of trilinear interpolations performed.
The timing for other modes (e.g. MIP, iso-surface, context-preserving rendering) can be
calculated from the results given in Figures 5.4 and 4.11. From Figure 5.4 it is visible
that by using resolutions such as w = 192 and w = 256 we start to decrease significantly
application’s performance, however it still runs in real-time (above 20 FPS), maintaning
user’s interactivity with the application. Moreover, from this evaluation we have found
appropriate to use w = 128 because we have a balance in terms of performance (achieving
full real-time when using only local illumination, and above 25 FPS when activating
transfer function) and visual accuracy as will be shown in the next subsection.
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Figure 5.4 Performance results measured in frames per second for different light probe image
resolutions. LI - DVR + Local Illumination (required for photorealistic volume rendering). TF
- DVR + LI + Transfer Functions.

The performance of our approach for each F+C visualization technique mentioned in
this paper added with the effect of photorealistic volume rendering can be seen in Figure
5.5. All of the techniques run above 25 FPS, as most of their processing is done on shader
and adds negligible overhead for the application. One exception of this situation occurs
for visible background on MRI data, which is already known to be slower than the other
approaches (Figure 4.14).

5.3.2 Visual Quality Evaluation

SH/w 256 192 128 64 16
1 1.342 1.342 (99.99%) 1.340 (99.87%) 1.338 (99.75%) 1.328 (98.95%)
2 0.169 0.170 (99.43%) 0.172 (98.25%) 0.173 (98.01%) 0.176 (96.27%)
3 0.023 0.023 (99.51%) 0.022 (93.63%) 0.025 (93.80%) 0.049 (48.30%)
4 0.025 0.025 (99.01%) 0.025 (97.54%) 0.022 (85.56%) 0.019 (76.52%)
5 0.021 0.022 (96.75%) 0.022 (94.44%) 0.026 (82.14%) 0.037 (56.61%)
6 -0.042 -0.041 (97.88%) -0.040 (94.12%) -0.037 (87.83%) -0.025 (60.03%)
7 -0.077 -0.077 (99.68%) -0.079 (97.48%) -0.083 (92.65%) -0.102 (75.60%)
8 -0.036 -0.035 (97.74%) -0.033 (92.66%) -0.029 (81.03%) 0.008 (-23.43%)
9 -0.018 -0.017 (93.94%) -0.015 (85.54%) -0.009 (52.88%) 0.029 (-61.91%)

ARA 98.22% 94.84% 85.96% 47.44%

Table 5.1 Accuracy measurements for each one of the nine SH coefficients computed from a
synthetic light probe of different resolutions. ARA - Average Relative Accuracy.
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Figure 5.5 Performance results measured in FPS for each one of the F+C visualization tech-
niques discussed in this paper. CAM refers to the technique proposed in [Bichlmeier et al. 2007].
SC - Smooth Contours, VB on CT - Visible Background on CT data, VB on MRI - Visible
Background on MRI Data. Times were measured running our approach with the KinectFusion’s
grid in resolution 5123 and light probe image of resolution w = 128.

SH/w 256 192 128 64 16
1 0.404 0.402 (99.53%) 0.404 (99.99%) 0.404 (99.93%) 0.412 (98.18%)
2 0.014 0.014 (99.66%) 0.015 (95.17%) 0.017 (84.26%) 0.042 (34.28%)
3 0.064 0.064 (99.65%) 0.064 (99.11%) 0.061 (95.04%) 0.050 (78.54%)
4 -0.006 -0.007 (84.53%) -0.009 (65.30%) -0.015 (40.28%) -0.045 (13.35%)
5 0.013 0.014 (93.89%) 0.016 (82.42%) 0.021 (63.46%) 0.046 (29.00%)
6 -0.053 -0.052 (97.87%) -0.050 (94.85%) -0.043 (81.61%) 0.003 (-7.42%)
7 0.001 0.001 (66.36%) 0.000 (2.18%) -0.004 (-42.18%) -0.027 (-7.31%)
8 -0.069 -0.069 (99.25%) -0.071 (97.09%) -0.074 (92.90%) -0.086 (79.89%)
9 -0.262 -0.260 (99.36%) -0.259 (99.17%) -0.255 (97.52%) -0.229 (-87.72%)

ARA 93.34% 81.70% 68.09% 45.13%

Table 5.2 Accuracy measurements for each one of the nine SH coefficients computed from a
real light probe of different resolutions. ARA - Average Relative Accuracy.

As can be seen in Figure 5.3, light probe resolution has a significant impact on final
application’s performance. Therefore, to choose the most appropriate resolution, we
have conducted a visual quality evaluation between different light probe resolutions and
its impact on photorealistic rendering. As shown in Figure 5.6, a virtual sphere was lit
from local illumination components computed from synthetic and real light probes of
several resolutions. The numerical accuracy for synthetic and real scenarios can be seen
in Tables 5.1 and 5.2. Compared to the scenario of highest resolution available to enable
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Synthetic

Real

Probe w = 256 w = 192 w = 128 w = 64 w = 16

Figure 5.6 A visual comparison between different real and synthetic light probe resolutions
and its impact on the illumination of a virtual sphere.

Probe

Real

Scene

Figure 5.7 Photorealistic on-patient medical data visualization based on local illumination
components.

still real-time performance (w = 256), by using resolutions of 192 and 128, we still have
an accurate solution. However, for lower resolutions of 64 and 16, accuracy decreases
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specially for the real situation. Thus, to optimize performance, we can use lower light
probe resolutions, such as w = 192 or w = 128, without losing too much visual quality on
the final rendering. This statement is assured by the visual color-coded error of Figure
5.6. While for the synthetic scenario there is little error in the final image (even for
w = 16), for the real scenario, the difference is main present on specular lobe position
for resolutions of w = 128 and w = 64, but, for the lowest resolution, diffuse component
deviates considerably in relation the highest resolution scenario.

In terms of photorealistic on-patient medical data visualization, the methods used in
this dissertation can compute diffuse and dominant specular terms for several challenging
illumination conditions, as can be seen in Figure 5.7. Thereby, allowing a consistent,
seamlessly integration of the virtual medical volume into the real scene.

5.4 SUMMARY

In this chapter we have presented a markerless augmented reality integrated solution
for on-patient medical data visualization based on photorealistic local illumination. By
using a light probe to capture dynamic environmental lighting, the approach supports
photorealistic volume rendering based on diffuse and specular terms computed in real-
time. From tests conducted, we have shown that the photorealistic volume rendering
improves visual quality while application’s performance is still real-time.





Chapter

6
CONCLUSION AND FUTURE WORK

6.1 CONCLUSION

We believe that the integrated solution proposed in this dissertation highlights the matu-
rity of several fields: markerless tracking, which is currently accurate and optimized for
real-time performance; on-patient medical data visualization, where medical volumes can
be rendered in real-time and with high quality based on the standard techniques proposed
in the field of volume rendering. Moreover, for the augmented scene, F+C techniques
have shown their usefulness by their different ways to separate focus from context re-
gions to be visualized; photorealistic rendering, in which by using a light probe image
captured from the real scene, the lightweight SH basis representation allows efficient and
accurate computation of coefficients for extraction of diffuse and specular terms from the
real dynamic environmental lighting.

This dissertation has proposed the first markerless augmented reality environment for
on-patient medical data visualization based on photorealistic local illumination and focus
+ context visualization. Markerless tracking is achieved by reconstructing a 3D reference
model of the patient’s ROI from KinectFusion algorithm and tracking it during live stream
with the ICP algorithm. Photorealistic volume rendering is performed by estimating
specular and diffuse components from spherical harmonics coefficients computed from a
mirrored sphere image. Finally, our approach supports four focus + context visualization
techniques which improve the visual quality of the final rendered image.

From an evaluation of the proposed solution, we conclude that it runs in full real-time
on typical medical datasets, provides high visual quality for the final augmented scene
through the use of focus + context visualization and photorealistic rendering. Moreover,
it provides accuracy enough for applications that need good ”visual” accuracy for the
registration (i.e. good composition and tracking of the virtual object into the augmented
scene). Experiments must still be conducted to evaluate if the accuracy achieved is
enough for medical AR applications to aid surgery, for instance.
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6.2 FUTURE WORK

Our approach does not support relocalization and tracking fails if patient’s ROI is not
visible in the scene. Therefore, it is possible to improve tracking robustness by solving
these issues. Moreover, the markerless tracking proposed in this dissertation was re-
cently extended to support interactive non-rigid tracking in the co-authored publication
[Souza et al. 2014]. To achieve the best performance, it would be interesting to use two
GPUs to run rigid and non-rigid tracking separately.

One of the current limitations of the proposed approach is that it was not evaluated
with a real patient, which would enable us to validate our approach in terms of accuracy.
Thus, one of the next steps must be the adaptation of the approach to be used and
evaluated in a real medical environment.

For the augmented reality environment, we have used a conventional display to show
the augmented scene. Multi-view solutions based on AR glasses, such as Google Glass, or
portable solutions based on mobile devices, such as iPad, can be employed by processing
the proposed approach on a server and transferring the visualization of the augmented
content for those alternative hardwares, allowing a more seamlessly visualization of the
virtual content onto the real scene.

Specifically for the techniques employed, F+C visualization based on visible back-
ground techniques do not support the visualization of real dynamic background scenes.
A multi-view approach, in which an additional webcam is used to capture real back-
ground scene, may solve this problem. Photorealistic rendering based on a light probe
has its own limitations, as the light probe is intrusive in the scene and it must be located
somewhere near the volume which will be illuminated. To solve this issue, a probeless
technique which computes local illumination components based on the LDR content could
be employed [Karsch et al. 2011, Karsch et al. 2014, Gruber et al. 2014]. However, the
current state-of-the-art works still do not support real-time performance for dynamic
lighting environments.

For future work, we can extend the photorealism of the proposed approach to take
into account global illumination effects into the volume rendering. Moreover, an improved
LDR to HDR algorithm could be applied to improve the quality of the image captured
as well as the accuracy of the diffuse and specular terms computation. In this sense,
real-time LDR to HDR algorithms must be studied and evaluated in the context of an
AR application to validate its applicability.
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